THE GENE PATENT DILEMMA:
BALANCING COMMERCIAL INCENTIVES
WITH HEALTH NEEDS

Lori B. Andrews, J.D.*

INTRODUCTION

On January 3, 2000, Donna Rawlinson MacLean filed application GB0000180.0 in the British Patent Office. The patent application entitled “Myself” was MacLean’s attempt to patent her own genetic sequence.1 “It has taken 30 years of hard labor for me to discover and invent myself, and now I wish to protect my invention from unauthorized exploitation, genetic or otherwise,” explained MacLean.2

Patent office officials were befuddled as to why she would want to patent her own genes. “It is not really worth patenting something unless you make a lot of money from it,” noted Brian Caswell of the British patent office.3 But MacLean, a poet, was interested in making a point, not in making profits. She was protesting the granting of gene patents to companies, which seemingly allowed them to own parts of people.4

* Lori Andrews is a Distinguished Professor, Chicago-Kent College of Law. She wrote this article while she was a Visiting Professor of Public and International Affairs, Princeton University. The research for this article was supported in part by a grant from the U.S. Department of Energy, program on ethical, legal and social implications of genetics, #DEFG0201ER63168.

2 Id.

4 Id.
MacLean is not alone in her criticism of gene patents. From French researchers to the premier of Ontario, Canada, to Native Americans to medical professional organizations, gene patents are under siege. The stakes are high. Thousands of gene-related patent applications have been filed with the U.S. Patent and Trademark Office (USPTO). Many of them will turn out to be worthless. Patents on the human erythropoietin gene (which codes for a protein needed by kidney disease patients) is worth more than $1.5 billion a year because a genetically engineered treatment can be made from it.10

The challenges to human gene patents come from a variety of interested parties—people from whom the patented genes were isolated, researchers who wish to undertake genetic epidemiology or develop gene therapies, clinicians and health plan operators who cannot afford the crippling licensing fees for genetic tests, and policy-makers who want to assure that the patent system actually acts as intended by its promoters, not inventions, and are thus not patentable. Evidence is mounting that meets its goal by encouraging invention. Evidence is mounting that meets its goal by encouraging invention. Evidence is mounting that meets its goal by encouraging invention. Evidence is mounting that meets its goal by encouraging invention.

I. THE FOUNDATION OF PATENT LAW

Around the world, industrialized nations share a belief in the importance of a strong patent system. The framers of the U.S. Constitution realized two centuries ago that it was important to create incentives for technological innovation. Article I of the United States Constitution gives Congress the power "[t]o promote the Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their respective Writings and Discoveries."13

Under the federal patent law, the patent applicant must show that his or her invention is novel, non-obvious, and useful.14 When a patent is granted, the inventor has the right to exclude others from making, using or selling his or her invention for twenty years from the date the patent application was filed. The patent laws are designed to assure that the public benefits from a new invention in exchange for the monopoly.15 The laws do not allow patents on

10 See section IV, infra.
14 Rebecca S. Eisenberg, Patents and the Progress of Science: Exclusive Rights and Experimental Use, 36 U. CHI. L. REV. 1017, 1022 (1989) (explaining that "[i]n order to obtain a patent, the applicant must first contribute a measure of worthwhile knowledge to the public storehouse.")
products of nature because the public would not gain anything new if an individual were allowed to, for example, patent air and charge us each a license fee whenever we breathed. Nor are patents allowed on scientific formulas. The U.S. Supreme Court has pointed out, "The laws of nature, physical phenomena, and abstract ideas are not patentable. Thus, a new mineral discovered in the earth or a new plant found in the wild is not patentable subject matter. Likewise, Einstein could not patent his celebrated law that \(E=mc^2 \); nor could Newton have patented the law of gravity. Such discoveries are 'manifestations of . . . nature, free to all men and reserved exclusively to none.'"

The patent application must also be adequately "enabling," that is, it must describe the invention fully, in a way that would allow another person skilled in that field to make the invention. This requirement is particularly important because one of the purposes of the patent law is to assure that the public receives information in exchange for the monopoly granted to the patent holder. When a patent is granted, the information it becomes public. Other inventors can then use that information to further their own research. Other inventors, however, cannot make or use the patented invention itself without the permission of the patent holder.

In the United States—unlike in Europe—the inventor has no duty to actually "work" (use or develop) the invention. He or she can just put it on the shelf. The public is nevertheless thought to be benefited by the fact that the information about how to make the invention is publicly disclosed in the patent application for others to build on.

Genes straddle the boundary between patentable and unpatentable substances. They seem akin to products of nature or formulas. Moreover, as Rebecca Eisenberg notes, "DNA sequences are not simply molecules, they are also information. . . . Patent claims to information—even useful information—represent a fundamental departure from the traditional patent bargain." That bargain envisioned allowing a patent on an invention in exchange for the disclosure of useful information in the application to spur on other inventors.

The fact that genes come from people adds to the concerns about how they are used. In France, for example, there is a variation of the products-of-nature doctrine singling out human materials. Under a French statute, the "human body and its elements and products, as well as knowledge of the total or partial structure of a human gene may not, as such, be the subject of a patent." In a letter to the U.S. Commissioner of Patents, in response to a proposal to revise patent law, the Indigenous Peoples Council on Biocolonialism pointed out, "One of the most basic tenets of modern western biology is that the genetic material of an individual is inherited from previous generations. Our genes are derived from our parents, grandparents, and their progenitors through the germ line. It is clear that human genes are the products of nature." Various groups describe genes as the common heritage of mankind which should not be owned by individual companies.

Some critics of gene patents are concerned that people are "commodified" by turning genes into property. The human origin of patented genes has not only a moral significance, but also a practical one. Genetic tests and treatment technologies are central to the future of health care. Genetic testing can lead to true preventive medicine; patients whose genes indicate a propensity to develop emphysema, for example, can avoid jobs that would trigger the disease. Gene therapies could also be used to treat previously fatal and untreatable diseases. Yet the holder of a patent on a disease gene will be able to control any use of that gene for diagnosis or treatment.

12 See id. at 1021-22 (relating that this restriction extends even to one who may have innovated independently). The same restriction extends to patenting of the same invention.
13 See id.
14 Yee Wah Chin, Universal Technology Suppression: Appropriate Antitrust and Patent Law Remedies, 66 AMRIL. L.J. 441, 450 (1998) (revealing that in jurisdictions which require the licensors to use the invention, the failure to do so can result in revocation of the license or even a relicensing to others).
15 See Eisenberg, supra note 15, at 1021-22.
ment, setting the prices as high as he or she wants, or denying access to certain diagnostic or treatment technologies. Unlike a patent on a drug, where alternative drugs can be developed and patented, the holder of a gene patent has control over any gene therapies that use the patented gene and can deny potential competitors the chance to make alternative products utilizing the gene sequence. Gene patents raise serious concerns for human health. Granting patent monopolies in this field has a much higher social cost than, for example, patenting a marginally better mousetrap or some other invention where consumers can readily choose a substitute or do without.

II. The Legal Basis for Gene Patents

There has yet to be a court decision squarely addressing whether human genes are the appropriate subject matter for a patent. In the famous case of *Diamond v. Chakrabarty*, the U.S. Supreme Court, in a five to four decision, determined that a genetically-engineered living bacterium was patentable. But the biologically-inspired living bacterium that could be useful in cleaning up oil—doubtedly existed—a bacterium that could be useful in cleaning up oil—doubtedly existed—a bacterium.

Proponents of gene patents spill oil. Human genes already exist. The *Chakrabarty* decision that “anything under the sun that is made by man” may be patented. That sweeping statement was limited by the Court itself, which reiterated the statutory requirements for a gene patent and pointed out that manifestations of nature were not patentable. The Court did not address whether the sequence of an existing gene would be considered to be “made by man.”

For any invention to be patented, the patent applicant must demonstrate that his invention is useful, non-obvious, and novel. Yet each of these criteria could raise issues for gene patents. Knowing the sequence of a gene is useful; for example, it allows genetic testing of an individual to determine if he or she has a normal sequence or a potentially problematic variation. But the useful properties of a gene (such as its ability to bind to another complementary strand of DNA for diagnosis or its ability to code for a particular protein) are not ones that the scientist has invented, but rather are natural, inherent properties of genes themselves. Establishing non-obviousness is also a grey area because computerized homologous sequencing techniques (in which, for example, the function of a human gene is predicted by a computer match to an animal gene whose function is known) seem obvious in light of prior art. The criterion of novelty, too, might also be difficult to meet. How does a disease gene suddenly become “new” enough to be a patentable invention once it is removed from an affected individual by a researcher? Shouldn’t the arrangement of the chemical letters C, A, T and G be viewed as an unpatentable formula or product of nature?

Although products of nature are not patentable, various courts have upheld patents on isolated and purified natural substances. The 1912 case of *Parke-Davis & Co. v. H.K. Mulford & Co.* upheld a patent on adrenaline, a natural hormone that was found in animal glands. The patent applicant identified, isolated, and purified the active ingredient—adrenaline. This discovery created a product that did not exist in nature in that precise form and that could be used for medical treatment.

Individuals who seek gene patents assert that they have isolated and purified genes because genes in the body have both coding and non-coding regions, in contrast to the patented genes which have been manipulated to eliminate the non-coding region, while apparently still performing the same function as a naturally occur-

28 In the gene patent cases that have been litigated, both sides usually accept the notion that genes are patentable and are battling over who has rights to the patented gene. See e.g., *Avigen, Inc. v. Chugai Pharmaceutical Co.*, 927 F.2d 1290, 1294 (Fed. Cir. 1991).

30 Id. at 305.

31 Id. at 309 (citing S. Rr. No. 82-1979, at 5 (1952); H.R. Rr. No. 82-1923, at 6 (1952)).

32 Id. at 309 (citing Funk Brothers Seed Co. v. Kalo Irrigonantal Co., 333 U.S. 127, 130 (1948)).

35 Sunny Bains, *Double Helix As Engineer*, 279 Sci. 2043, 2043 (March 27, 1990) (detailing that the letters C, G, A and T stand for the four different bases that make up human DNA: cytosine, thymine, adenine, and guanine).

36 196 F. 496-97 (5th Cir. 1912).

37 Id.

38 Id. at 497.
The unique concerns about health care patents

The issue of gene patents arises within the most contested and malleable area of patent law—that of patents related to health. Historically, in the United States, patents on products and processes necessary to treat patients were not even allowed.42 Even today, there are exceptions in U.S. patent law43 and in the international

agreements44 to which the U.S. is a signatory that create certain exemptions from traditional patent law for patents related to health care. Even courts faced with patent infringement cases will take action to protect public health.45 And government officials, including U.S. Health and Human Services Secretary Tommy Thompson, have threatened to ignore patents that are seen as inimical to public health.46 In Canada, in the wake of terrorists’ use of anthrax, the government decided to override Bayer’s patent for the antibiotic Cipro and ordered a million tablets of a generic version of the drug.47 Ultimately, Bayer struck a deal with the Canadians to sell Cipro at a much lower price.48

A. The History of Health Care Patents

Originally, U.S. patent law forbade patents on health care inventions. Throughout the first 150 years of U.S. history, the USPTO did not issue patents for methods used to diagnose and treat sick patients.49 Methods to treat disease were not considered patentable subject matter by the medical profession, the courts, and the USPTO. Patents were granted for tangible discoveries or inventions, and medical or surgical methods did not appear to fall within the scope of the statutory requirements.

In 1862, a New York court was one of the first to address the issue. The court assessed whether a newly discovered use of ether, to eliminate pain experienced by patients undergoing surgical operations, was patentable.50 Although ether was a well-known substance at the time, the alleged invention was that of ether was

contributed to the production of an invention, and that product is not made available to the public in a reasonable amount of time, the federal agency that provided funding has march-in rights allowing it to grant a license to another entity to make the product. See Peter S. Arno and Michael H. Davis, Why Don’t We Enforce Existing Drug Pricing Controls? The Unrecognized and Unenforced Reasonable Pricing Requirements Imposed upon Patents Deriving in Whole or in Part From Federally Funded Research, 75 TUL. L. REV. 631, 643-44 (2001).

48 See, e.g., TRIPS, supra note 12.

49 See, e.g., City of Milwaukee v. Activated Sludge, Inc., 69 F.2d 577 (7th Cir. 1934).

50 Industry Observers Debate Implications of HHS Secretary’s Remarks on Cipro Patent, 10 BNA HEALTH LAW REPORTER 1709 (Nov. 8, 2001).

54 Morton v. New York Eye Infirmary, 17 F. Cas. 879 (S.D.N.Y. 1862) (No. 9,865).
administered in incremental doses, the person would feel no pain.36
The court held that the newly discovered use for the ether was not
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was
patentable, because “the natural functions of a person or animal was

In a pivotal case in 1954, the Board of Patent Appeals opened
the door to patents on medical methods.38 But it was not until the
past decade in the United States that an infringement suit was
litigated by a physician against another physician for using a patented
medical procedure.39 In that case, Dr. Samuel Pallin patented a
method for performing cataract surgery and, in 1995, sued Dr. Jack
Johnson for using the technique without paying a royalty.40 As a
result, Dr. Pallin’s action, the American Medical Association
randomly chose its medical journals to forbid doctors from patenting medical
matters because it found that these patents compromised
care.46 The implications of such patents are troubling. Say a
patent claim. Not wanting to pay a royalty fee to use that procedure, another doctor might
infringe the patent.

the patent was that surgical instruments used to perform the surgery had already been
patented and to patent the method would involve granting a second patent on the instru-
ments. Id.
30 Petman, supra note 52, at 91.
31 Pallin v. Singer, 36 U.S.P.Q. 2d 1090 (D. Del. 1995). The case was settled with a career judg-
ment barring Dr. Pallin from enforcing the patent.
32 AMERICAN MEDICAL ASSOCIATION, COUNCIL ON ETHICAL AND JUDICIAL AFFAIRS, CODE OF
33 American Medical Association, The Pharmacist Immunity Statute, 79 J. Pat. Trademark
TRIPS%20Notes%20Public%20Health.pdf.

B. International Concerns About Health Care Patents

Internationally, patents related to health care are also subject to
scrutiny to assure that the public’s welfare is protected. When the
U.S. Congress decided to exempt physicians using patented medical
procedures from patent infringement suits, at least eighty other
countries already had such an exemption.46 In fact, internationally,
the exemption is much broader than in the United States.46

Until recently, many other countries did not even provide
intellectual property protection to medicines and other pharmaceutical
products.46 Some developing countries had short periods of

41 City of Milwaukee v. Activated Sludge, Inc., 69 F.2d 577, 593 (7th Cir. 1934).
42 Id.
43 Seth Shulman, Owning the Future 41 (Boston: Houghton-Mifflin 1999). In addition, the
European Patent Convention exempts from patent protection methods for treatment by
surgery or therapy and diagnostic methods practiced on the human body. Convention on
the Grant of European Patents (European Patent Convention), Oct. 5, 1973, art. 524, 13
44 The U.S. exemption is narrower because the biotech industry was able to get an exemption
be exempt from patents on medical activities but not on the "practice of a process in viola-
tion of a biotechnology patent."
TRIPS%20Notes%20Public%20Health.pdf.
C. Why Drug Patenting is Not the Appropriate Analogy

Although historically and globally, governments have been cautious about granting patents in the health care arena, patents have been central to the development of new drugs. Proponents of gene patents have tried to justify such patents by claiming that the arguments in favor of patenting drugs apply to patenting genes as well. However, drug development requires a greater economic incentive than does gene discovery and there are fewer social, economic, and public health costs of granting a drug patent than a gene patent.

The pharmaceutical industry argues that patent protection of drugs is necessary to attract the capital necessary to compensate for the creation and testing of new drugs. The cost of bringing a drug to market is estimated to be $802 million. That price includes many expenditures—such as the salaries for research and development scientists, the great expense of animal research and human clinical trials, and the cost of obtaining FDA approval. It also includes the costs associated with failed discoveries—drugs that were initially developed but rejected before, during, or after clinical trials.

The discovery of genes does not require the same incentives as drug development. Molecular biologists were attempting to identify genes long before the U.S. Patent and Trademark Office made clear that genes could be patented. Moreover, there are no expensive clinical trials when a gene is discovered and knowledge about the sequence of the gene is used to identify whether a particular patient has a mutation in that gene. In some cases, a disease gene has been identified one day and testing begun almost immediately. Because the FDA does not regulate the clinical services of genetic tests (as opposed to the sale of genetic diagnostic kits or gene therapies), there is no costly FDA approval process. Thus, the need to financially compensate a gene-discoverer is not as great as the need to compensate the developer of a drug that must take it through costly clinical trials, with only a small number of drugs actually becoming commercially-viable products.

Gene patents do not seem necessary to encourage technology transfer in the move from gene discovery to the availability of a ge-
nec diagnosti test. A group of medical organizations points out, "Most discoveries of pathogen or human disease genes can be effectively translated into genetic tests without recourse to the incentives provided by patents or exclusive license agreements."55 As soon as information about the discovery of the hemachromatosis gene was published, laboratories began testing for mutations in the gene. After a patent on the gene was granted seventeen months later, 30% of the 119 U.S. laboratories surveyed reported discontinuing or not developing a genetic test for the disease.56 The patent holder was asking for an up-front fee of $25,000 from academic laboratories and as much as $250,000 from commercial laboratories, plus a fee of $20 per test.57 The patent interfered with clinical adoption of the test and per test.58 The patent interfered with clinical adoption of the test.

opment of higher quality or lower cost alternative testing methods.59

As opposed to the development of drugs, which is undertaken primarily with private funds (for which investors expect a commercial return), the discovery of genes has been undertaken with vast quantities of public funds. Over $1.8 billion of taxpayer money was spent on the human genome project in its sequencing.60 The basic research that yields discoveries of genetic associations with disease have been undertaken by the public," notes bioethicist Jon Merz.61 The public increasingly feels it is paying twice for research—once to fund the research, and then to the biotech companies mining this taxpayer-funded research for genes to patent.

Moreover, there are fewer downsides to granting a patent on a drug or a medical device than granting a patent on a gene. Other researchers can create alternatives to drugs and devices. There are no alternatives to the patented human genes in genetic diagnosis and gene therapy.

IV. The Impact of Gene Patents

The very exclusivity of a patent, the monopoly power of its holder, has created problems in the medical and scientific realms. For twenty years, a gene patent holder controls any use of "its" gene.62 The patent holder can prevent a doctor from testing a patient's blood to see if the patient has that gene. The patent holder can prevent anyone else from doing research to improve a genetic test or to develop a gene therapy based on that gene. Policymakers around the world are now questioning whether the incentive of a patent is necessary for gene discovery and whether the benefits of such patents are worth the potential harm to the research enterprise and to public health.

A. Gene Patents as Impediments to Research

When the Human Genome Project proposed to spend $3 billion of taxpayer money to identify and sequence the entire human genome most biological scientists did not expect to own the genes they studied.63 Because obtaining a gene patent seemed inconceivable at the time, Nobel laureate Walter Gilbert devised a scheme to copyright DNA.64 Just as one would copyright a book, his plan was to own the CATTAGTA . . ., sequence and charge a fee each time someone wanted to find out which sequences corresponded to which genes.65 His idea never came to fruition.66 Other prominent researchers in genetics, such as C. Thomas Caskey, then at Baylor University and Leroy Hood, then at Cal Tech, cautioned that scientists would be less likely to share material or information if they were allowed to patent intellectual property rights over genes and reap financial rewards.67 The predicted problems have indeed come to pass. Research to identify the genes responsible for diseases is...
being impeded by the possibility of gene patents.

Progress in the search for a gene related to autism was impeded because certain researchers were hoarding patients’ tissue samples. They each wanted to be the first one to find the gene and gain commercially.

Researchers may delay publishing their findings about a gene until they attempt to secure patent rights. For example, the scientific report of the discovery of the hemachromatosis gene was submitted for publication over a year after the patent on the gene was issued.

Various studies underscore how commercial incentives to academicians can delay the dissemination of scientific knowledge by those scientists. Academic researchers with funds from companies are four times as likely as those without such funds to report that trade secrets had resulted from their research. Rates of publication decline as the proportion of the research funded by industry increases. The most productive and entrepreneurial faculty are most likely to withhold data.

One of every five medical scientists in one survey had delayed publication of research results for at least half a year in order to protect financial interests. Those scientists who were directly engaged in the commercialization of their research were three times more likely to delay publication and twice as likely to refuse to share information than those who were doing basic work. Among the life scientists, geneticists were the most likely to withhold data.

Collaboration is being stifled as well. A 2002 study found that forty-seven percent of geneticists surveyed had been denied requests from other faculty members for information, data, or materials regarding published research. When geneticists were asked why they intentionally withheld data, more than twenty percent listed the need to protect the commercial value of their research. Even more troubling is the finding that twenty-eight percent of geneticists surveyed reported that they were unable to duplicate published research because other academic scientists refused to share information, data, or materials.

B. The Problem of Verification

Once genes are located and patented, research may be further impeded. The patent examiner has to take what the applicant says as correct, and there is no FDA review when a company offers a genetic test as a service. If a patent holder states that one in three people in the population have the gene related to its patent, the patent rights allow the holder to prevent others from duplicating the patent holder’s research and evaluating it. In one survey, fourteen out of twenty-seven gene patent holders said they would require a license for researchers to study the prevalence of mutations in the gene in the population. Even if the patent holder allows research by other scientists, the licensing costs may prevent other researchers from doing the necessary epidemiological studies to determine, for example, what proportion of people with the mutation in the general population will actually manifest the disease. Some entities offering genetic testing exaggerate the prevalence of the disease, possibly to scare people into being tested. The researchers discovering and patenting genes have financial incentive to promote the use of those genes for diagnostics as rapidly as possible, and often

87 See generally id. (recognizing that the rush to be first to achieve commercial success results in a race to develop new technologies that are not necessarily the best). See generally id. (reporting that in their survey, 10% of medical researchers decreased research efforts because of issues pertaining to patents on medical procedures).
88 Id. at 578.
90 David Blumenthal et al., Withholding Research Results in Academic Life Sciences, 277 JAMA 1224, 1224 (1997).
91 Id. at 1226-27.
92 Id. at 1777-78.
93 David Blumenthal et al., Data Withholding in Academic Genetics, 473 JAMA 473, 477 (2002).
before sufficient data is available to assess how well the tests predict future disease.

A similar conundrum is occurring with forensic DNA testing. Courts that were first asked to admit forensic DNA testing as evidence sometimes had trouble judging its merits because the testing was developed proprietarily by companies, and all the scientific articles about the tests were written by company employees. An article about the tests was not available. Chief Judge Judith Kaye of the Court of Appeals New York pointed out, "DNA forensic analysis was developed in commercial laboratories under conditions of secrecy, and preventing emerging of independent views. No independent academic or governmental laboratories were publishing studies on the use of DNA profiling." It would be easy for a court to mistakenly think that the technique was uniformly accepted by the scientific community, rather than that it had never been independently assessed.

In a 2000 unpublished Vermont district court decision, State v. Pfennig, the trial court refused to admit a new type of DNA testing in the PCR technique, claiming they were trade secrets. This prevented others from assessing the reliability of the technique and led to a decision not to admit the evidence of a match to defendant's to DNA. The Pfennig court stated:

"The failure of the manufacturers of DNA testing systems to disclose the primer sequences they have created to permit amplification of DNA is problematic from the perspective of scientific knowledge and, consequently, validation. It is more than problematic; it is anti-scientific in that it inhibits the ability of scientists in the field (including defense experts) to test the manufacturers' claims. The manufacturer's proprietary concern cannot trump Defendant's right to a fair trial, which includes the right to have only scientifically validated evidence admitted for the jury to consider in the State's case against him. Especially, with a new test, consider in the State's case against him."

C. The Problem of Multiple Rightsholders

"The essence of science is cumulative investigation combined with hypothesis testing," notes Berkeley economist Carl Shapiro. "As Sir Isaac Newton put it, each scientist 'stands on the shoulders of giants' to reach new heights." But, if a scientist had to pay a fee to every scientist who came before, progress may be blocked rather than enabled.

The patentability of small sections of genes such as Express Sequence Tags (ESTs) leads to a plethora of negotiations before research can be undertaken. When the U.S. Patent and Trademark Office first considered a proposal to patent ESTs in 1993, patent officials applied the traditional technical requirements for a patent of novelty, non-obviousness, and usefulness and found the NIH patent application fell short on all three.

Gene sequencing researchers continued to file patent applications on ESTs, but became more savvy about how they referred to these partial sequences in their applications. They pointed out how the partial gene sequences could be useful as a marker to locate the full gene or as a unit of analysis to understand evolution. In 1997, the U.S. Patent and Trademark Office surprised many by announcing that it would grant patents for ESTs where novelty, non-obviousness, and utility were proven. By that time, patent applications for over a half million partial gene sequences were pending.

107 Id.
108 Id. at 464.
109 Id. at 463-64.
110 No. 57-4-96 GICr 1, 49 (Apr. 6, 2000), available at http://scientific.org/distribution/archive/pfennig.pdf.
111 Id. at 49.
113 Id. at 119-20.
115 See id. at 981-82 & n.57 (citing Leslie Roberts, Gene Patents: Ruminations From Rejection of NIH Claim, 257 Sci. 1853, 1855 (1992)).
116 Tim Friend, Deciphering the Genetic Code, USA Today, Sept. 28, 1995, at 1D.
with not only the patent holder for the full BRCA1 and BRCA2 genes, but with all of the other patent holders who had discovered and patented any of the hundreds of other mutations in that gene. Any one of the patent holders could derail the process. For example, if a particular patent holder wanted to be the entity to find a gene therapy for the disease at issue and did not want any other researcher to have that chance, that patent holder could refuse to negotiate. Even if the holders of genetic samples were willing to allow others to use them, access to databases of genes and gene segments can be costly. Pfizer reportedly paid $15.75 million to Incyte Pharmaceuticals for access to their DNA database and SmithKline Beecham has paid $125 million to Human Genome Sciences for access to its genetic information.

Economist Carl Shapiro elaborates on the problems created by a "patent thicket." Using traditional economic analysis, he demonstrates how, when there exist multiple monopolists controlling various components of a product, the price of the resulting product is higher than if a single firm controlled all the inputs. Yet the combined profits of the producers are lower in the presence of complementary monopolies. Thus, if there are a number of patent holders whose permission is needed to create a gene therapy, and any one of them could block the production of the gene therapy, inefficiencies in the market are created which potentially harm both the patent holder and the users of gene therapy.

The United States National Institutes of Health (NIH) raised similar concerns: "Proprietary rights in research tools that do not require further development may function more as a tax on commercial development than as a source of rights to preserve the viability of end products and to motivate further investment." As a result, the NIH has proposed guidelines to foster sharing—without undue restrictions—of cell lines, proteins, monoclonal antibodies, and other biological research tools created with NIH funds.

110 See Garber, supra note 9 (noting that the company had only been issued one patent at that time).

111 Id.

113 Shulman, supra note 66, at 147.

114 Shapiro, supra note 112, at n.1. His statement was made early in the Federal Trade Commission’s hearings on Competition Policy in the New High-Tech Global Marketplace.

115 Shapiro, supra note 112.

117 Id. at 698.

121 Id. at 28,656-07.
The United States does not have an explicit research exception in its patent law that would allow basic research to progress without requiring patent permissions. In contrast, European patent law allows researchers in both commercial and noncommercial settings to use a patent invention in their research without violating the patent. Japan’s patent law has a broad exemption to allow researchers to use patented inventions in their research, and this has not diminished Japan’s strong biotechnology sector.

D. The Problem of Submarine Patents

It sometimes takes years or even decades for a patent application to work its way through the patent office and be granted. Meanwhile, another researcher may have independently discovered the same genetic sequence and may have developed a treatment or pharmacogenomic test based on that sequence. When the original patent application is granted, known as a “submarine patent,” its owner can prohibit the second researcher from making its test or treatment available; alternatively, the owner can require a hefty licensing fee from the subsequent researcher.

The problem of submarine patents in the gene patent arena is particularly vexing when scientists and companies get patents on the genetic sequences without knowing fully the functions of the sequences. Other researchers who develop treatments related to that sequence can be blocked from producing that treatment by the patent holder.

132 Caulfield et al., supra note 102, at 228; see also Eisenberg, supra note 15, at 1018-19.
133 See Janice M. Mueller, No “Dilittante Affair”: Rethinking the Experimental Use Exception to Patent Infringement for Biomedical Research Tools, 76 WASH. L. REV. 1, 39 (2001) (discussing the fact that Japan’s law, in contrast to that of the United States, allows a great deal of the patent that Japan’s law, in contrast to that of the United States, allows a great deal of the experimental use of patented inventions); see also Yamada Kenji, Business strategy for experimental use of patented inventions, 76 WASH. L. REV. 1, 39 (2001) (discussing the fact that Japan’s law, in contrast to that of the United States, allows a great deal of the experimental use of patented inventions).
134 See Steven Blumenthal, The Use of Delayer Tactics to Obtain Submarine Patents and Amend Around a Patent that a Competitor Has Designed Around, 81 J. PAT. & TRADEMARK OFF. SOC‘Y 11, 13 (1999). The submarine patent is filed with broad claims and continuous amendments are filed to hold the patent in the patent office. When an individual later tries to use the idea contained in the patent, the inventor will demand royalties or threaten to file a lawsuit.
135 See Steven Blumenthal, The Use of Delayer Tactics to Obtain Submarine Patents and Amend Around a Patent that a Competitor Has Designed Around, 81 J. PAT. & TRADEMARK OFF. SOC‘Y 11, 13 (1999). The submarine patent is filed with broad claims and continuous amendments are filed to hold the patent in the patent office. When an individual later tries to use the idea contained in the patent, the inventor will demand royalties or threaten to file a lawsuit.

Along those lines, Human Genome Sciences filed for a patent on a genetic sequence related to a receptor. While the application was making its way through the patent system, AIDS researchers were undertaking detailed research on a receptor known as the CCR5 receptor, which had been found to be critical for HIV infection. In humans, the CCR5 gene normally produces a protein used by the HIV virus to enter cells and infect its victims. People who lack both copies of the gene for the receptor strongly resist HIV infection, and those who have just one copy or damaged copies become infected much more slowly. On February 15, 2000, Human Genome Sciences (HGS) of Rockville, Maryland was issued U.S. Patent No. 6,025,154 for "Polynucleotides encoding human G-protein chemokine receptor HDGNR1." The patent covers all possible embodiments associated with the receptor, including all DNA and amino acid sequences corresponding to the receptor or virtually any portion thereof, and any process for making, using or administering the receptor, including diagnostic assays. It turned out that the receptor for which HGS had been granted the gene patent was the CCR5 receptor. Even though the patent applicant was unaware that there was a connection between the claimed gene and AIDS susceptibility, it gained exclusive rights to the gene. Despite the lack of disclosure as to the protein function, Human Genome Sciences was effectively granted a complete right to require a licensing fee for any diagnostic technique or therapy utilizing the CCR5 gene created by anyone else.

The biggest outcry came from researchers at the NIH who had been examining the CCR5 receptor since early 1996 as having a
function as a co-receptor in binding the HIV virus. Because HGS had been granted the patent that covered practically all possible applications of the CCR5 gene, NIH could be excluded from research on CCR5 function and use in HIV treatments.

The saga of the CCR5 receptor emphasizes that patents are awarded too early in the scientific process, creating a disincentive for the further research necessary to actually provide a health benefit. In some instances, the patent not only denies research over the gene mutations the patent applicant discovered, but also gives the patent holder rights over any other mutations later discovered by other researchers. In other instances, patents have been granted on all methods of comparing a high risk individual’s sequence to a known normal sequence, even though the patent has only described the holding of the one method. Such patents seem to contravene the holding of the one method. The Supreme Court in *Brenner v. Manson*, that “a patent is not a U.S. Supreme Court holding for the successful conclusion.” The Brenner court underscored because need to show a specific utility for the patented invention because otherwise “a patent may confer power to block off whole areas of public”.

A British geneticist, Peter Goodfellow, then Professor of Genetics at Cambridge University, argued, "This should not be an ethical debate, but a debate over trade... If you allow the Americans to gain patents that cover vast stretches of the entire human genome, the economic consequences could be disastrous. I work on sex determination. There is a group in the U.S. that has applied for a patent on the whole Y chromosome, so if I were to try to claim anything I would be subject to their ownership." 158

144 Carson and Mandrog, supra note 137.
145 Id.
146 See, e.g., U.S. Patent 5,679,635 (issued Oct. 21, 1997), Aspartylase Gene Protein, Methods of Screening for Mutations Associated with Cerebral Disease.
147 See European Patent 695,754 (issued Mar. 6, 1996), Method of Diagnosing a Predisposition for Breast and Ovarian Cancer (stating that Claim 1 is for a method of diagnosing a predisposition to breast and ovarian cancer by comparing an individual’s BRCA1 gene sequence to that covered by the patent). 148 Brenner v. Manson, 383 U.S. 519, 536 (1966) (holding that the question of patentability of a product must be cleared before any interference can be declared).
149 Id. at 534 (citation omitted).

E. Health Care Concerns About Gene Patents

Gene patents can impede the delivery of health care services in several ways. Because a patent holder has the power to prevent any other entity from testing for a particular disease gene, concerns are raised about the quality of the testing and the potential for access. Like many gene patent holders, the company holding the exclusive license on a gene associated with Alzheimer’s disease will not let any laboratory except its own perform the test. Doctors and labs across the country face a lawsuit if they try to determine whether one of their patients has the genetic form of Alzheimer’s, even though testing can easily be done by anyone who knows the gene sequence without using any product or device made by the patent holder.

Various mutations in the same gene can cause a particular disease. But companies that do not let anyone else test for “their” gene make it more difficult to find mutations than if many laboratories were testing. In countries where the Alzheimer’s gene and hemachromatosis gene were not patented, researchers found previously unknown mutations. These mutations can be used to diagnose people who would not otherwise be diagnosed.

The U.S. company Myriad Genetics was granted a European patent related to the BRCA1 breast cancer gene. The patent, EP 695754, covers all methods for diagnosing breast cancer by comparing a patient’s gene to the gene sequence that Myriad describes in its patent. Myriad is now asserting that no French doctor or scientist should be allowed to test for BRCA1 breast cancer gene mutations; instead, the company requires that all samples be sent to Myriad’s lab. French physicians, though, are concerned that such a mandate compromises patient care. They allege that Myriad’s test

153 Knox, supra note 151, at A8.
154 Butler and Goodman, supra note 5 (reporting that the Utah-based Myriad Genetics obtained its European patent in 2001 after obtaining its U.S. patent in 1999).
155 Id.
Gene patents also hamper pharmacogenomics.162 Most drugs only work on a percentage of patients who use them.163 Genetic testing can help distinguish those patients for whom a drug will work from those for whom it will not, but such tests will also limit the market for drugs. For example, a pharmaceutical company has filed for a patent on a genetic test to determine the effectiveness of one of its drugs.164 But the company says it will not develop the test, or let anyone else develop it.165 Such a test would cause the company to lose customers.

F. Accessibility of Genetic Tests

The cost of patented tests raises health care concerns as well. The province of British Columbia discontinued paying for genetic breast cancer testing because the health care system there could not afford what Myriad was charging.166 Geneticists in Canada and in France can offer genetic tests for breast cancer at a lower cost than the $3,850 (in Canadian dollars) charged by Myriad (which, under its gene patent, requires that samples be sent to its laboratories for testing).167 In some situations, the very people whose genes were patented may not be able to afford the test that was created using their bodily material, or may find that a company has decided to quash entirely a test related to their condition. This is not a mere fiscal issue, but translates into potential harm to patients. This is true in the case of the patented Canavan gene. Canavan disease is a rare genetic disease that occurs most frequently in Ashkenazi Jewish families and leads to a degeneration of the brain, causing the children to lose their vision, experience seizures, and eventually require

162 Geeta Anand, Big Drug Makers Try to Postpone Custom Regimens, WALL ST. J., June 18, 2001, at B1 (defining pharmacogenomics as "personalized medicine, in which doctors would prescribe drugs based on each person's genetic makeup").
163 Id. The genetic differences in individuals influence the efficacy of the drugs that are used to treat them.
164 Id.
165 Id.
166 David Hodgson, U.S. Firm Flexes Its Muscle Over CA Testing, MEO. PORT, Sept. 11, 2001 (noting that hospitals in Canadian province British Columbia only had a hereditary cancer program budget of $900,000, whereas performing the Myriad test alone would cost up to $7.5 million).
167 Id. (highlighting that Canadian physicians would be able to perform their own genetic breast cancer testing for one-third of the cost that Myriad charges were not for the patient).
tube feeding. They generally do not reach their teen years. Rabbi Josef Ekstein founded a large genetic testing program in New York that tested for Canavan disease. When the holder of the patent on the gene began demanding a higher-than-usual royalty and attempted to prohibit all but a few labs from conducting the test, Rabbi Ekstein said: “If Canavan testing won’t be available—which is how it looks if they enforce the patent—there’s no question Canavan children will be born.”

G. Impact of Gene Patents on the Doctor/Patient Relationship

Because of the ability of physician/researchers to patent genes, patients have become potential treasure troves to researchers seeking lucrative genes. When John Moore, a Seattle businessman, fell ill with hairy-cell leukemia, he went to a top specialist at the UCLA Medical Center. He followed his doctor’s orders and underwent surgery to remove his spleen, in addition to other treatments. After surgery was completed, Moore returned to Seattle, yet continued to fly back to Los Angeles for tests over the next seven years. Moore thought these visits were necessary to monitor his condition, and compiled out of fear that the leukemia might reappear. In reality, his physician was patenting certain unique chemicals in Moore’s blood, as well as a gene isolated from Moore, and setting up contracts for cell line development with a Boston company. Sandz, the Swiss pharmaceutical company, paid a reported $15 million for the right to develop the cell line taken from Moore—which the doctors had named the Mo-cell line.

Moore began to suspect that his tissue was being used for purposes beyond his personal care when his UCLA doctor continued to take samples not only of blood, but of bone marrow, skin and sperm. When Moore discovered that he had become patent number 4,483,032, he sued the doctors for lack of informed consent, breach of fiduciary duty and conversion (property theft). Moore felt that his integrity was violated, his body exploited, and his tissue turned into a product: He said, “What the doctors had done, was to claim that my humanity, my genetic essence, was their invention and their property. They view me as a mine from which to extract biological material. I was harvested.”

The case was so unusual that the trial court judge quickly threw it out of court, but Moore persevered and the California Court of Appeals ruled that he had been wronged. The appellate court underscored the growth of the market: “Until recently, the physical human body, as distinguished from the mental and spiritual, was believed to have little value, other than as a source of labor. In recent history, we have seen the human body assume astonishing aspects of value.” The appellate court reviewed cases involving celebrities like Béla Lugosi, who was held to have a property interest in his likeness, preventing other people from marketing photos of him: “If the courts have found a sufficient proprietary interest in one’s persona, how could one not have a right in one’s own genetic material, something far more profoundly the essence of one’s uniqueness than a name or a face?” The court pointed out that because the Uniform Anatomical Gift Act gives patients control over what is done with their bodies after they die, it seems logical they should have control before they die. "Defendants’ argument for research purposes." By creating a cell-line, which is a culture capable of reproducing indefinitely, researchers are better equipped to isolate particular genes. Id. at 482 n.2.

168 Id. at 481.

169 John Vidal and John Carvel, Limits to the Gene Market, THE GUARDIAN (London), Nov. 12, 1994, at 25 (quoting John Moore as saying he was “essence-raped”).

171 Id. at 481.

172 Id.

174 Id. at 481-82. Moore’s lymphocytes were valuable because they “overproduced certain lymphokines, thus making corresponding genetic material easier to identify.” Id. at 482 n.2.

175 Moore, 793 F.2d. at 482. A cell line is important because primary cells, which are taken directly from the body, “reproduce a few times before dying, making them poor contem-
that the DNA from plaintiff’s cells is not a part of him over which he has the ultimate power of disposition during his life is ... untenable," said the Court of Appeals. On a more practical note, the court wrote that “if this science has become science for profit, then we fail to see any justification for excluding the patient from participation in those profits.”

The appellate decision was not the last word on the matter, though. The doctor and biotechnology company to whom the doctor sold the rights to Moore’s cell line appealed to the California Supreme Court where the deeply divided justices each wrote eloquently about his or her view of the body, ranging from a sacred temple to a biomedical factory. An acrimonious dispute surfaced in the appellate court. An acrimonious dispute surfaced in the trial court. A near unanimous disagreement surfaced in the body of its opinion to inform Moore of the potential commercialization of his tissue, if proven at trial, violated Moore’s right of inspection of his tissue, if proven at trial, violated Moore’s right of inspection of his tissue, if proven at trial, violated Moore’s right of inspection of his tissue, if proven at trial, violated Moore’s right of inspection of his tissue, if proven at trial, violated Moore’s right of inspection of his tissue. Even in a majority of the justices, for differing reasons, rejected the idea that Moore could claim a property interest in his body.

V. POLICY ALTERNATIVES

A variety of medical organizations oppose gene patents as threatening medical advances and patient care. The public is beginning to cry foul as well. The Chicago Tribune published a major editorial asking the U.S. Congress to “liberate gene data.” The concerns about gene patents are leading to policy initiatives via litigation, legislation, and administrative action. Around the globe, major policy discussions about gene patents are taking place.

180 Moore, 490 Cal. Rptr. at 507-08.
181 Id. at 509.
182 See generally Moore v. Regents of the Univ. of Cal., 793 P.2d 479 (Cal. 1990) (displaying varied legal perspectives on bodily property rights in four differing opinions from California Supreme Court Justices Panzerti, Arabian, Bruland, and Monk).
183 Id. at 487 (holding that even though Moore’s cause of action for conversion was not tenable, he could still recover on informed consent and breach of fiduciary duty actions).
184 Id. at 495-96.
185 Id. at 496.
186 See infra pp. 133-43.
A. Litigation

The patent system is a three-way give-and-take among the U.S. Patent and Trademark Office, the courts, and Congress. All three have active roles in assuring that the goals of the patent system are met and that the monopoly granted by the patent is not too broad. Most often, this means that the courts and Congress winnow back patents granted by the Patent Office. When Samuel Morse convinced the U.S. Patent and Trademark Office to grant him a patent on what became the telegraph, he could only patent his invention—the telegraph.

The courts’ role in narrowing patents is particularly important, given that there are incentives for the U.S. Patent and Trademark Office to grant patents. “We are the patent office, not the rejection office, said Bruce Lehman, the PTO’s commissioner at the time.” The USPTO’s budget comes out of money collected through the fees. The USPTO budget in 1990, the first year of the Human Genome Project, was $175 million in patent processing fees. By 1993, the fees had risen to $423 million. Moreover, each patent examiner receives a salary bonus based on how many final allowances or rejections of a patent he or she allows. A rejection can be challenged and may not become final, but it is easier to receive a bonus by allowing patents final for some time.

Suits directly challenging the patentability of genes have not been undertaken, in part, because of the high costs of bringing such litigation; sometimes it is just cheaper for a laboratory to pay licensing fees for use of a gene and pass that cost on to the patients who are tested, rather than initiate a legal challenge. Some geneticists at medical schools have approached their university lawyers asking them to challenge a gene patent, only to be told that such a challenge is untenable given that the university itself has gene patents. The University of California, for example, was ranked third in a study listing institutions granted gene patents in the year 2000.

Just recently, however, legal assaults on gene patents have been launched by two constituencies. The first set of challenges have been brought by patients against researchers and their institutions in instances where the defendants did not specifically disclose their intentions to patent a gene isolated from the patient. The patients rely on precedents requiring physician/researchers to disclose potential financial conflicts of interest to the patients or research subjects in advance of undertaking the research. In a pro bono case in which the author is serving as an attorney, the research subjects from whom the gene was isolated have claimed that the researcher violated the subjects’ right of informed consent, breached his fiduciary duty to them, engaged in fraud, and converted their property by not disclosing his intent to patent their disease gene.

Patenting genes violates several ethical and legal principles. To find the genes, physicians and genetic researchers rely on large numbers of patients and their families to supply the tissue to search for the genes. A variety of laws support the concept that physicians have a fiduciary relationship with their patients and should avoid conflicts of interest. For example, there are legal prohibitions against self-referrals, fee-splitting and kickbacks. Yet genetic researchers searching for a commercially valuable gene and geneticists who get royalties from genetic tests both have a financial conflict of interest with their patients.

Gary Zigler, Transducing the Genome: Information, Anarchy, and Revolution in the Biomedical Sciences 213 (McGraw-Hill 2001) (listing the University of Texas as tenth on this list, as well).

Cf. id.; see also Peter Gorner, Parents Suing Over Patenting of Genetic Test, CHI. TIM. Nov. 19, 2000, at 1C.

See Greenberg, No. 00 C 6770, see also Peter Gorner, supra note 206, at 1C.

The second type of legal challenge provides a more direct attack against gene patents themselves. Such attacks could broadly challenge the patent on a gene as being, at its core, an inappropriate patent on a product of nature or they could whittle away at the patents on various grounds.

In October 2001, the Institut Curie in Paris challenged Myriad Genetics’ European breast cancer gene patent on the grounds of lack of novelty (because predisposition tests for breast cancer based on indirect methods were available prior to the Myriad patent), lack of inventive step (because the gene sequence patented by Myriad was based, in part, on information from public genome databases), and inadequate description (because there were errors in the original sequence published by Myriad). On February 22, 2002, the Institut Curie initiated a challenge to another Myriad patent, EP 705903 (“Mutations in the 17q-linked breast and ovarian cancer susceptibility gene”). The governments of Belgium and the Netherlands intend to challenge that same patent as well. Geneticists in those countries issued a joint statement saying that if gene patents were not narrowed or eliminated “the monopolies on genes and genetic testing will wreck the reimbursement system and negatively influence health care.” Other challenges to gene patents might try to narrow the patent claims. The breadth of patents claiming future mutations and methods of diagnosis could be challenged on the grounds that the patent has not sufficiently described and enabled all of the mutations or methods that the patent holder has claimed rights to.

Still other legal challenges might try to raise a public health exemption under TRIPS. In 2001, premier Mike Harris, the government leader of the province of Ontario, Canada, decided that it was detrimental to Ontario’s health plan to recognize Myriad Genetics’ patents on the BRCA1 and BRCA2 breast cancer genes. “The frontier of gene patenting has been treated like the Wild West for too long,” said Harris. “The benefits of a worldwide effort such as the

B. Legislation

Because the U.S. Constitutional provision about promoting the useful arts is quite general, the actual provisions of patent law are enacted by Congress and can be modified by that body. For example, gene patents could be banned altogether. It is quite common internationally to have exceptions to patent laws. The European Patent Convention Article 53(a) prohibits patents for “inventions the exploitation of which would be contrary to ordre public or morality”. The European Union’s Biotechnology Directive considers certain subject matter to be per se unpatentable, including:

1. processes for cloning human beings;
2. processes for modifying the germ line genetic identity of human beings;
3. uses of human embryos for industrial or commercial purposes; and
4. processes for modifying the genetic identity of animals which are likely to cause them suffering without any substantial medical benefit to man or animal, and also animals resulting from such processes.

The U.S. Congress is considering a proposed law that would amend the medical procedures exemption to exclude from patent liability those health care providers involved in genetic testing so that their ability to diagnose patients will not be compromised by patents on genes. The bill was introduced by Members of Congress Lynn Rivers (D-Mich.) and Dave Weldon (R-Fla.). Abraham Lincoln described the patent system as ‘adding the fuel of
interest to the fire of genius,""119 Rivers said. "I am concerned that the current Federal patent policy as applied to genetic sequences may be smothering the fire of genius."
211 The proposed "Genome Research and Diagnostic Accessibility Act of 2002" would ensure that researchers and diagnosticians can obtain appropriate access to patented sequence information.212 The bill exempts two groups from patent infringement: 1) medical practitioners and related health care entities providing genetic diagnostic, prognostic, or predictive tests, and 2) scientists undertaking non-commercial genetic research.213 The bill also requires public disclosure within thirty days of filing a patent application involving a genetic sequence discovered with federal funds.214 This provision would help to eliminate "submarine" patents.

A companion bill, also introduced by Rivers and Weldon, the "Genomic Science and Technology Innovation Act of 2002," directs the federal Office of Science and Technology Policy (OSTP) to initiate a study of the impact of federal policies on the innovation process for genomic technologies.215 The study bill is based on the presumption that federal intellectual property laws and technology transfer laws can stimulate the development of innovative genetic technologies by attracting commercial investment, but may also inhibit basic research and information sharing, thereby slowing innovation. Rivers was primarily concerned that gene patents were being granted without an adequate understanding of their impact on innovation.216

The mandated study would assess the impact of federal policies, including intellectual property policies, on the innovation process for genomic technologies. The study would identify and quantify the actual and reasonably expected effects of patenting policies on genomic science and technology innovation and explicitly consider various alternative levels of intellectual property protection of genomic materials and their likely impact on innovation.

211 H.R. 3966, 107th Cong. S 4 (proclaiming that the purpose of the legislation was to share genetic information for research and diagnostic testing).
212 Id. at 2.
213 Id. at 4. Congress has already enacted a law requiring that patent applications become public after 18 months (as another way to combat submarine patents). 35 U.S.C.S. § 122(b)(1)(A).

C. Patent Pools

Policy options within traditional patent law are also being explored, such as creating patent pools. Attorneys and others at the U.S. Patent and Trademark Office published a paper noting that "no single company or organization . . . has the resources to develop any significant fraction of the genetic information present in an organism. If the proprietary information is not freely available or licensed in an affordable manner, researchers will be precluded from using these protected nucleic acids to develop new therapeutics and diagnostics."217

A potential solution would be something similar to the pool created by the American Society of Composers, Authors, and Publishers (ASCAP), which handles the licensing of music under the copyright laws. Instead of negotiating with each holder of a copyright for thousands of songs, a radio station or bar can buy a blanket license from ASCAP and play any song from the pool at any time.218 Likewise, a gene patent pool could potentially extend non-exclusive licenses to all comers for set fees. That way, a researcher who wants to develop a treatment for breast cancer is not prevented from doing so by the holder of a patent on all or a section of the breast cancer gene. Nor does the researcher need to negotiate with each holder of each patent for the hundreds of mutations in the breast cancer gene, thus saving transaction costs and preventing future litigation.

216 H.R. 3966, 107th Cong. S 3(d).
217 Jonnie Clark et al., PATENT POOLS A SOLUTION TO THE PROBLEM OF ACCESS IN BIOTECHNOLOGY PATENTS? U.S. PATENT AND TRADEMARK OFFICE, available at http://www.uspto.gov/web/offices/pac/dapp/ags/patentpool.pdf, Dec. 5, 2000 (defining a patent pool as an "agreement between two or more patent owners to license one or more of their patents to one another or third parties."). By implementing patent pools, one can more easily access patented genetic inventions, which would promote research and development while protecting competition.
218 See AM. SOC'y OF COMPOSERS, AUTHORS, AND PUBLISHERS, COMMON LICENSING TERMS, available at http://www.ascap.com/licensing/termsdefined.html; see also Michael J. Massar, noting that the "Blanket license itself could be a tactic used to achieve price discrimination.

ANDREWS

vation. The study would assess researchers' access to genomic materials; the rate and quality of innovation; the cost and public availability of new genomic technologies including genomic diagnostics; and possible research barriers.226
Patent pools are often created voluntarily by those within an industry.229 For instance, in the DVD industry, Sony, Philips and Panasonic created a patent pool for inventions that had to be used to encode in a particular DVD-Video and DVD-ROM standards.230 There are economic and antitrust concerns about the terms under which patents are licensed in a pool. The ASCAP model creates nonexclusive licenses for a set fee.231 In contrast, licensing patents in a pool under the ambiguous standard of "reasonable royalties" may lead to legal disputes to define reasonableness. If reasonableness is defined only after a subsequent researcher has developed a product the patent holder can still gouge the patent user.232 For that reason, it is more appropriate to have a fee determined in advance.

Gene patent holders may be less likely to participate in voluntary patent pools than are patent holders from other industries. Patents are more important in the biotechnology and pharmaceutical industries than in other industries.233 In addition, the lack of substitutability for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented genes or tutes for certain biomedical discoveries (such as patented gene pools or the Antitrust Dilemma, 16 YALE J. ON REG. 399, 373 (1999), ("Over the last one hundred and fifty years, patent pools have played an important role in shaping both the industry and the law in the United States.")

229 Clark et al., supra note 227, at 5-6.

230 See Am. Soc’y of Composers, Authors, and Publishers, ASCAP Licensing, About ASCAP Licensing, available at http://www.ascap.com/licensing/about.html (stating that ASCAP licenses easily enable businesses to obtain the right to perform songs in one transaction).

231 Shaprio, supra note 112, at 128 (explaining that if firm price standards are not established, companies may be less willing to participate in pools because of the financial disincentives); see also, Guttman, supra note 142, at 1681 (citation omitted).

232 Id.

233 Shaprio, supra note 112, at 127 (demonstrating how patent holders can license their complementary patents together and then divide the proceeds).

235 Institute for Curiosity, Against Myriad Genetics’s Monopoly on Tests for Predisposition to Breast and Ovarian Cancer, The Institute is Challenging an Opposition Procedure With the European Patent Office, Sept. 12, 2001 (quoting a speech given by the French Minister of Research after the announcement of the completion of the first large scale analysis of the human genome sequence), available at http://www.curie.net/actualites/myriad/declaration_e.htm.

236 See World Trade Organization, Compulsory Licensing and Data Protection, 3-4 (noting that each World Trade Organization member has the right to provide for compulsory licenses to prevent patent abuses), available at http://europa.eu.int/index_en.htm. Article 8.2 of TRIPS also allows for compulsory licenses in that it states that "appropriate measures ... may be needed to prevent abuse of intellectual property rights by right holders." Id. at 4.

appeal patent office re-examination decisions. This would allow, for example, organized patient groups to have their interests represented in the decisions about the granting of gene patents.

This policy approach is being advocated by commentators because there are social costs to granting patents with claims that are too broad. These include costs associated with patent litigation and too many small patents, which may also add to the costs, including: unnecessary licensing costs; foregone research opportunities; abandoned or avoided by the patentee's competitors for fear of infringing liability; and the activities of non-competitors who may respond to the combination of lax patent standards and robust rewards to patentees by diverting excessive resources out of productive activities and into the 'patent game.'

These social risks of overbroad and invalid patents are the reason we have a patent office in the first place. Initially, inventors were merely registered their inventions. But so many patents were merely registered their inventions. The European Parliament's Directive on the Legal Protection of Biotechnological Inventions states that if a patent application uses material of human origin, the source must have had the opportunity of expressing free and informed consent. Consequently, Europeans have a right to refuse to allow their genes to be patented. Foreign governments have expressed outrage when their citizens' genes have been patented by U.S. researchers. Protests against the audacity of U.S. government researchers patenting the genes of a woman in Panama and a man in Papua, New Guinea were sufficiently widespread that the patents were withdrawn.

When Sharon Terry learned that her two young children had inherited PXE (pseudoxanthoma elasticum), a connective tissue disorder that leads to blindness and potential heart attacks, several groups of researchers called to ask for tissue samples from her children to try to find the gene. She inquired as to why they did not get samples from other researchers and was told that scientists would not share the samples. Terry started a bank with tissue samples from her children and began a collaborative project with researchers. When University of Hawaii pathobiologist Charles Boyd isolated the gene, he listed Sharon Terry as a co-inventor on the patent. The PXE patients' group she formed will make the decisions about how to license the rights to the gene. Additionally, the PXE group will give 50% of the resulting royalties to the University. This way the PXE patients' group can keep the price of diagnostic tests down by licensing providers who charge a lower fee.

But allowing those from whom genes are taken to have a property interest in the patent is not a comprehensive solution to the problems created by gene patents. It will be an extremely rare case where researchers will actually need to negotiate with the people who have a gene mutation associated with a particular disease or their family members. For common complex genetic diseases, such as heart disease, so many people will have a particular mutation

240 Mergens, supra note 201, at 592.
241 Id. at 596.
242 Id. at 955.
243 AMERICAN MEDICAL ASSOCIATION, COUNCIL ON ETHICAL AND JUDICIAL AFFAIRS, CODE OF MEDICAL ETHICS: CURRENT OPINIONS WITH ANNOTATIONS 25-26 (2000) (stating that "physicians should not use human tissue without obtaining consent from patients for the use of organs or tissues in clinical research . . . ").
244 Directive 98/84/EC, supra note 217. Recital 26 of this Directive relates that: Whereas if an invention is based on biological material of human origin or if it uses such material, where a patent application is filed, the person from who
that researchers will likely be able to find research subjects who will not insist on participating in the patent application. Moreover, for most diseases, researchers will not have to collect DNA from people in the first place. Researchers will be able to use DNA samples that already exist in hospital pathology laboratories, public health screening programs, research centers, and DNA banks.252

Patients are being by-passed entirely as the source of DNA for gene patents. A New York City cancer hospital, Sloan-Kettering, was given $5 million by a California biotechnology company for access to its pathology samples of cancer tissue biopsies for genetic research.253 Duke University Medical Center entered into a commercial agreement with Ardea, granting the start-up genomics company access to Duke’s patients’ tissue.254 Harvard Beth Israel Deaconess Medical Center entered into a similar arrangement.255

CONCLUSION

Using the biological resources of the public (and a substantial amount of public funding), genes have been discovered and patented. Although copyright law has a fair use exemption for socially valuable uses, patent law does not.256 Consequently, policymakers are considering a variety of alternatives, inside and outside of traditional patent law, to assure that gene patents will be used in socially valuable ways.

252 See ANDREWS and NELKEN, supra note 85, at 4-5.
254 Deborah Jowse, Human Tissue for Sale: What Are the Costs?, 173 W.J. Med. 302 (2000) (commenting that these arrangements “are among the latest academic hospitals to form (commenting that these arrangements “are among the latest academic hospitals to form partnerships with biotechnology companies for the purpose of providing human tissue for use in research, treatment, and drug development”).
255 Id. (noting that both the Harvard and Duke hospital arrangements raise legal and bioethical concerns).
256 17 U.S.C. § 107 (2002); see Eisenberg, DNA Sequenom, supra note 22, at 796.

WHO DESERVES THE PATENT POT OF GOLD?:
AN INQUIRY INTO THE PROPER INVENTORSHIP OF PATIENT-BASED DISCOVERIES

Cynthia M. Ho*

I. Background .. 112
 A. Patent Law and Policy .. 112
 B. Patent Law, Policy, and Genetic Material 114
 1. Patentability ... 114
 2. Inventorship versus Ownership 116
 II. The Patient-Patient Interplay 118
 A. Patient Involvement in Patent Process 118
 1. Sample Scenarios ... 118
 a. “Normal” Course of Treatment 118
 b. Doctors Who Seek “Special Populations” 119
 c. Special Patients Who Seek Researchers 119
 2. Informed Consent .. 121
 3. Patient Perceptions ... 122
 a. Assumed Neutrality of Doctors and Researchers 123
 b. Patent System Mis-perception 124
 B. Research Reality ... 125
 1. Commercial Interests ... 125
 III. Addressing The Inventorship Issue 129
 A. The Importance of Inventorship 129
 1. Inventorship Policy ... 129
 2. The Implications of Inventorship on Patent Ownership 132

* Assistant Professor of Law, Loyola University of Chicago School of Law. I would like to thank Professor Mary Anne Bobinski for inviting me to participate in this symposium issue. In addition, thanks to Susan Kuo, Jacqueline Lipton, Angela Upchurch and Neil Williams for helpful comments on prior drafts of this article. Last, but not least, special thanks to Julie Fitzgerald and Heather Nolan for their excellent research assistance. Comments and questions on this article are welcome at chofieldu.edu.