
 53 

“INFECTIOUS” OPEN SOURCE SOFTWARE: 
SPREADING INCENTIVES OR PROMOTING 

RESISTANCE? 

Greg R. Vetter∗ 

ABSTRACT 

Some free or open source software infects other software with its 
licensing terms.  Popularly, this is called a viral license, but the software is 
not a computer virus.  Free or open source software is a copyright-based 
licensing system.  It typically allows modification and distribution on 
conditions such as source code availability, royalty free use and other 
requirements.  Some licenses require distribution of modifications under the 
same terms.  A license is infectious when it has a strong scope for the 
modifications provision.  The scope arises from a broad conception of 
software derivative works.  A strong infectious ambit would apply itself to 
modified software, and to software intermixed or coupled with 
non-open-source software.  Popular open source software, including the 

                                                                                                               
∗   Assistant Professor of Law, University of Houston Law Center (UHLC); Co-Director, 

Institute for Intellectual Property and Information Law (IPIL) at UHLC; biography and 
additional background available at:  www.law.uh.edu/faculty/gvetter.  Relevant to this Article 
is that my background includes a Master’s degree in Computer Science and full-time work 
experience in the business-to-business software industry from 1987 to 1996.  Research for this 
Article was supported by summer research grants from the University of Houston Law 
Foundation and a grant from the University of Houston’s New Faculty Research Program.  I 
also thank UHLC’s IPIL Institute and its sponsors for support of my endeavors at UHLC.  My 
thanks to UHLC students Jason Williams, Cuong Lam Nguyen, Stacey R. Vause and Nivine 
Zakhari for research assistance.  My special thanks to UHLC student Kristin Brown for 
comments, suggestions and research assistance on this Article.  I also benefited from input and 
discussions with Joe Dryer, a UHLC alumnus whose Houston-based company is involved in 
open source software applications.  In addition, I am thankful for exceptionally capable 
support provided by the staff of the University of Houston Law Center’s John M. O’Quinn 
Law Library, including Peter Egler and Nicole Evans, and by UHLC’s Legal Information 
Technology Department.  My special thanks to Craig Joyce, Ray Nimmer, Heather Meeker, 
and Ron Chichester for helpful discussion and comments.  Finally, I thank Peter Yu, Director 
of the Intellectual Property and Communications Law Program at Michigan State University 
College of Law.  I presented elements of this Article at that program’s Conference on 
Intellectual Property, Sustainable Development, and Endangered Species:  Understanding the 
Dynamics of the Information Ecosystems.  My thanks to audience members and co-panelists 
for comments and feedback. 



54 RUTGERS LAW JOURNAL [Vol. 36:53] 

GNU/Linux operating system, uses a license with this feature.  This Article 
assesses the efficacy of broad infectious license terms to determine their 
incentive effects for open source and proprietary software.  The analysis 
doubts beneficial effects.  Rather, on balance, such terms may produce 
incentives detrimental to interoperability and coexistence between open and 
proprietary code.  As a result, open source licensing should precisely define 
infectious terms in order to support open source development without 
countervailing effects and misaligned incentives. 

TABLE OF CONTENTS 

I.  INTRODUCTION.................................................................................... 56 

II.  OPEN SOURCE SOFTWARE AND INFECTIOUS LICENSE TERMS ............... 70 
A. Open Source Licensing and Software Development....................... 71 

1. Conditioned Permissions for Copyright Protected  
Software ................................................................................. 74 

2. Open Source Development Norms and Practices ..................... 79 
B. The General Public License (GPL) ................................................ 82 
C. The GPL’s Infectious License Terms............................................. 88 

III.  THE TECHNOLOGICAL FRAMEWORK FOR INFECTIOUS AMBIT............... 94 
A. Noninfectious Scenarios for Aggregated Software......................... 95 
B. Modifications and/or Extensions to Source Code........................... 97 
C. Intermixing Code in the Development and Runtime 

Environments .............................................................................. 103 
D. Coupling and Integrating Software in the Runtime Environment.. 107 

IV.  THE INFECTIOUS GPL TERMS IN THIS FRAMEWORK ........................... 110 
A. User Programs and the Linux Kernel ........................................... 113 
B. The Lesser GPL – Intermixing Libraries and Other  

Software...................................................................................... 119 

V.  THE INCENTIVES EFFICACY OF INFECTIOUS LICENSE TERMS.............. 125 
A. Isolating the Infectious Terms ..................................................... 127 

1. Upfront Fees for Intermixed Software and Open Source 
Software ............................................................................... 131 

2. Ongoing Service Fees for Intermixed Software and Open 
Source Software.................................................................... 135 

B. Efficacy Model ........................................................................... 137 
C. Infectious Effects ........................................................................ 144 

1. Purported Benefits of Infectious Terms ................................. 146 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 55 

 

2. Problems with Infectious Terms ............................................ 152 
3. Striking a Balance:  Limited Quarantine for Infectious 

Terms? ................................................................................. 156 

VI. CONCLUSION ..................................................................................... 162 

LIST OF FIGURES AND TABLES 

Figure 1 – Modifying and Extending Software......................................... 101 
Figure 2 – Intermixing Software .............................................................. 106 
Figure 3 – Coupling and Integrating Software.......................................... 108 
Table 1 – Summary:  The Technological Framework for  
 Infectious Ambit ...................................................................... 109 
Table 2 – Certainty Enhancing Measures within the Infectious  
 Framework............................................................................... 124 
Figure 4 – Modify the Original Open Source to Intermix with Other  
 Software .................................................................................. 128 
Figure 5 – Open Source Software Ready to Intermix with Other 

Software .................................................................................. 130 
Figure 6 – Efficacy Model Illustration – scenarios for the  
 infectious “whole” ................................................................... 141 

 



56 RUTGERS LAW JOURNAL [Vol. 36:53] 

I.  INTRODUCTION 

Copyright offers both incentives and deterrents to derivative uses, protecting 
derivative works as well as prohibiting their unauthorized production. 

Paul Goldstein, 
Derivative Rights and Derivative 
Works in Copyright 1 

The GPL requires that works “derived from” a work licensed under the GPL 
also be licensed under the GPL.  Unfortunately what counts as a derived work 
can be a bit vague.  As soon as you try to draw the line at derived works, the 
problem immediately becomes one of where do you draw the line? 

Linus Torvalds, 
The Linux Edge 2 

Too often, the open source software debate has an all-or-nothing flavor.3  
One might hear:  open source software is better because the production 
process taps debugging efficiencies and harvests volunteer effort on an 
impressive scale.4  Or hear:  proprietary software is better because it 

                                                                                                               
1.    Paul Goldstein, Derivative Rights and Derivative Works in Copyright, 30 J. 

COPYRIGHT SOC’Y U.S. 209, 239 (1983). 
2.    Linus Torvalds, The Linux Edge, in OPEN SOURCES:  VOICES FROM THE OPEN SOURCE 

REVOLUTION 108-09 (Chris DiBona et al. eds., 1999) [hereinafter Torvalds, The Linux Edge]. 
3.    See Peter Wayner, Whose Intellectual Property Is It, Anyway?  The Open Source 

War, N.Y. TIMES, Aug. 24, 2000, at G8 (describing that “the war of Open Source . . . is being 
fought in conference rooms, law offices, hacker redoubts and university dormitory rooms and 
in the hearts of millions of people surfing the Web”); Eben Moglen, Freeing the Mind:  Free 
Software and the Death of Proprietary Culture, Address Before the University of Maine Law 
School’s Fourth Annual Technology and Law Conference (June 29, 2003) (describing the 
“fundamental choice” between free software and a “dead [proprietary] system of inefficient 
distribution”), at http://emoglen.law.columbia.edu/publications/maine-speech.pdf; see also 
David McGowan, SCO What? Rhetoric, Law and the Future of F/OSS Production 10-16 
(Univ. of Minn. Law School, Research Paper No. 04-9, June 12, 2004) [hereinafter 
McGowan, SCO What?] (describing the rhetorical strategies used by both sides of the debate 
and their accompanying exaggerated claims), available at 
http://www.law.umn.edu/uploads/images/830/McGowanD-SCOssrn.pdf. 

4.    See, e.g., Yochai Benkler, Coase’s Penguin, or, Linux and The Nature of the Firm, 
112 YALE L.J. 369, 376-77, 415-23 (2002) (noting that one advantage of open source software 
and peer production in general is that “it allows larger groups of individuals to scour larger 
groups of resources in search of materials, projects, collaborations, and combinations than is 
possible for firms or individuals who function in markets”); Eric S. Raymond, The Cathedral 
and the Bazaar (2000) (coining the phrase “given enough eyeballs, all bugs are shallow,” also 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 57 

 

promotes traditional software business and investment models, and software 
has seen rapid growth.5 

The debate gives insufficient credence to coexistence between the two 
types of software.6  This inhibits progress toward an optimal presence for 
both types in the greater software ecosystem, both domestically and on the 
international scene.  The growth trajectory of open source software suggests 
that it is a long-term player in that ecosystem, provided there is market 
confidence in the mode of legal protection underlying open source software. 

Currently, open source software uses a copyright-based, generally 
applicable license to grant permissions for others to use, modify and 
distribute the software.  In return, licensees must comply with conditions that 
keep the software “open source.”7  A variety of open source software 

                                                                                                               
known as “Linus’ Law”), at http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-
bazaar (last modified Aug. 2, 2002); see also David McGowan, Legal Implications of 
Open-Source Software, 2001 U. ILL. L. REV. 241, 268, 274 (2001) [hereinafter McGowan, 
Legal Implications] (noting the volunteerism underlying open source software development). 

5.    David S. Evans, Politics and Programming: Government Preferences for Promoting 
Open Source Software, in GOVERNMENT POLICY TOWARD OPEN SOURCE SOFTWARE 34, 35-37 
(Robert W. Hahn ed., 2002) (discussing the high rates of productivity, innovation, and 
competition that the proprietary development method has brought to the software industry), 
available at http://aei-brookings.org/admin/pdffiles/phpJ6.pdf (last visited Jan. 8, 2004). 

6.    Bradford L. Smith, The Future of Software: Enabling the Marketplace to Decide, in 
GOVERNMENT POLICY TOWARD OPEN SOURCE SOFTWARE, SUPRA NOTE 5, AT 69-70 (discussing 
the over two decade long debate about the merits of open source software, but arguing that 
“both open source and commercial software are integral parts of the broader software 
ecosystem”) (emphasis in original).  But see Jonathan Zittrain, Normative Principles for 
Evaluating Free and Proprietary Software, 71 U. CHI. L. REV. 265, 266, 282 (2004) (positing 
on the one hand that the “legal forms of proprietary and free software production cannot 
coexist within a given piece of code” but observing on the other that “free and proprietary 
software can compete alongside one another in a market”). 

For a general discussion of open source and Linux deployment in corporate computing 
environments, see MARTIN FINK, THE BUSINESS AND ECONOMICS OF LINUX AND OPEN SOURCE 
119-33 (2003). 

7.    See Zittrain, supra note 6, at 269 (describing conditions that keep software “open 
source” as a “form of legal jujitsu” to protect free software from proprietary software 
developers). 

Throughout this Article I deal with open source software as follows:  characterizing it as 
a licensing system that promulgates generally applicable, conditional permissions.  The other 
possible characterization is that these licenses will in some instances create contracts among 
developers, distributors and users.  While the contract analysis is important to open source 
software, this Article does not delve into the many doctrinal questions of contract law that the 
various open source software licenses raise.  See McGowan, Legal Implications, supra note 4, 
 



58 RUTGERS LAW JOURNAL [Vol. 36:53] 

licenses exist.  The General Public License, or GPL,8 is the most prominent 
license.  It is the first of its kind.  The GPL contemplates a buffer zone.  If 
proprietary software falls into this zone when intermixed with the open 
source software, it must henceforth be distributed as open source software.  
This is sometimes called an “infectious” or “viral” license,9 but this does not 
mean that the software itself is a virus or is malicious. 

This Article examines infectious license terms of expansive scope and 
the incentives such terms create for open source and proprietary software.  
Some estimate that infectious terms promote open source software growth by 

                                                                                                               
at 289-302 (describing and analyzing a number of the potential doctrinal questions of contract 
law raised by the GPL); Greg R. Vetter, The Collaborative Integrity of Open Source Software, 
2004 UTAH L. REV. 563, 644-47 (cataloging potential issues from treating open source licenses 
as agreements and noting that the questions raised are sometimes similar to enforceability 
questions for shrinkwrap licenses). 

Often one cannot determine from the face of the license whether its deployment will 
create a contract.  More facts might be needed, such as whether there was any explicit or 
implicit assent to the terms, or whether the open source software provided full notice of the 
license’s terms to downstream licensees.  Thus, I treat the license for its core purpose, as a 
defense to a copyright infringement action.  See David McGowan, Legal Aspects of Free and 
Open Source Software 4-7 [hereinafter McGowan, Legal Aspects] (describing that the primary 
enforcement mechanism for open source licenses is the copyright infringement power), 
available at http://www.law.umn.edu/uploads/images/253/McGowanD-OpenSource.rtf (Oct. 
5, 2004).  I mostly put aside questions such as whether, if treated as a contract, a particular 
open source license would give the licensor rights against those who take the software, or 
whether lack of privity eliminates any recourse an original licensor might have under contract 
against sub-licensees down a chain of distribution. 

On the other hand, in either a contract sense or a permission sense, for infectious terms, 
ultimately a court will be interpreting words in a written instrument.  Even if such 
interpretation is not under strict contract law, courts may borrow contract interpretation 
principles.  For broadly-phrased infectious terms, then, a key source of the uncertainty will 
spring from the same source in both perspectives:  the license’s broad language expressing the 
infectious terms. 

8.    GNU General Public License Version 2 (June 1991) [hereinafter GPL], available at 
http://www.gnu.org/licenses/gpl.html. 

9.    This Article’s title uses the word “infectious” to intonate the license characteristic 
that I study.  In my vocabulary, this replaces the common phrase “viral license” for several 
reasons.  First, the Article focuses on the extension of license conditions when software is 
intermixed and coupled.  This is more consistent with my focus than the carrying of such 
terms through a chain of software distribution.  In the medical context, a virus is a carrier.  
Second, I find “infectious” less pejorative than “viral.”  I find no positive connotations for 
“viral” or “virus.”  While this Article argues against broad infectious license terms, it and my 
previous open source software article reflect my positive view of the movement.  There are at 
least some positive connotations for “infectious”:  the positive energy behind the open source 
movement is infectious, like laughter, or like the feeling of a job well done. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 59 

 

supporting community development norms and preventing proprietary 
poaching of the software, or converting proprietary software to open source.  
Even if some of these viably benefit open source, my analysis is skeptical 
that infectious terms, on balance, have beneficial effects.  They adversely 
increase legal uncertainty for open source licenses and produce incentives 
detrimental to interoperability, compatibility, and coexistence between open 
and closed source software.10  As a result, open source licensing should 
precisely define infectious terms in order to support open source 
development without countervailing effects and misaligned incentives. 

In particular, the analysis challenges the third purported benefit of 
infectious terms: converting proprietary software to open source.  Broad 
infectious terms are unlikely to cause such conversion.  Some proprietary 
software may adopt the open source development model for its particular 
benefits and attributes.  Such vendors, however, will do this on their own 
timeline and inclination.  They are unlikely to succumb to surprise infection.  
The GPL, with its infectious terms, is the most widely adopted open source 
software license.  However, many seek license terms that are not infectious, 
or they seek terms that more clearly delineate the scope, and corresponding 
risk, of the infectious terms.  This is shown by other popular licenses without 
infectious terms.  It is underscored by the steady push of open source 
software into corporate and enterprise computing.  These risk-minimizing 
groups prefer greater certainty in their duties and obligations.  While 
infectious terms may be necessary to some degree to support the other 
conditions that keep software open source, the debate shows that broad, 
infectious terms of expansive scope have a polarizing influence. 

An example of this all-or-nothing debate is illustrated by the popular 
press.  The Wall Street Journal ran an article with a cartoon showing a small 
portly penguin swinging a slingshot, taking aim at a giant.11  The penguin’s 
name is not David, but Tux, the mascot of the open source operating system 

                                                                                                               
10.    See generally JONATHAN BAND & MASANOBU KATOH, INTERFACES ON TRIAL:  

INTELLECTUAL PROPERTY AND INTEROPERABILITY IN THE GLOBAL SOFTWARE INDUSTRY 
xxi-xxii (1995) (describing the history of legal developments as they bear on interoperability 
among software applications and between software with hardware). 

11.    Robert A. Guth, Free to Choose, WALL ST. J., May 19, 2003, at R6. 



60 RUTGERS LAW JOURNAL [Vol. 36:53] 

known as GNU/Linux.12  In the cartoon, however, Goliath was labeled.  His 
belt bears the moniker Microsoft and his shield carries the Microsoft 
Windows logo.13  Goliath stands, knees buckling, as Tux prepares to sling 
another stone.14  The cartoon vividly illustrates the popular perception of a 
marketplace battle between the flagship open source software product and 
the world’s largest software company.15  There is strenuous competition 
between these two in niche markets.  However, proprietary software, much 
of it internally custom-developed, still dominates the software ecosystem.16  

                                                                                                               
12.    Id.  Here, I clarify my use of a few important terms.  The GNU/Linux operating 

system is popularly referred to as Linux.  The operating system, however, is not a single large 
software work, but is rather an aggregation of many software components.  The central 
component is the kernel, which is properly called Linux.  Distributions of a 
Linux-kernel-based operating system include other critical components.  Most distributions 
include a set of essential software tools from the GNU project, a separate open source 
software effort.  Thus, the most accurate attribution uses the name GNU/Linux for such a 
distribution. 

Another term that varies both in popular use, and among the open source community, is 
whether one should call the software “free” software, “open source” software, or perhaps 
“free/libre and open source” software, sometimes referred to as “FLOSS,” “FOSS” or “f/oss.”  
The “free” label is apt for licensing systems that disallow charging royalties for use of the 
software, as most open source software licenses do.  “Libre” is the preferred international 
label popularized by the European Commission, which emphasizes the alternate usage of 
“free” as in liberated, for which “libre” is the French and Spanish equivalent.  See Int’l Inst. of 
Infonomics, Free/Libre and Open Source Software:  Survey and Study, at 
http://www.infonomics.nl/FLOSS/? (last visited Sept. 20, 2004).  To shorten and simplify the 
label, I will simply use “open source software” to include “free/libre and open source 
software.” 

13.    Guth, supra note 11, at R6. 
14.    Id. 
15.    Linux’s success is most vividly illustrated in the submarket for “server” computers, 

which underlie much of the Internet.  In the server market, Linux shipments are estimated to 
climb to 15.9% during 2003 from 13.3% in 2002.  Id.  Microsoft’s estimated shipments, 
however, were essentially flat from 2002 to 2003, at approximately 60.4%.  Id.  In the overall 
operating system market, which by sheer numbers is dominated by “desktop” computers 
running Microsoft’s Windows operating system, Linux share is at about two percent, but 
growing.  Margret Johnston, IDC:  Microsoft Tightens Vise on OS market, COMPUTERWORLD, 
Feb. 28, 2001, available at http://www.computerworld.com/governmenttopics/government/ 
legalissues/story/0,10801,58278,00.html; see also United States v. Microsoft Corp., 84 F. 
Supp. 2d 9, 22-24 (D.D.C. 1999) (analyzing open source software as a potential market 
entrant and noting that “[a]lthough Linux has between ten and fifteen million users, the 
majority of them use the operating system to run servers, not PCs”), aff’d in part, rev’d in 
part, 253 F.3d 34 (D.C. Cir. 2001). 

16.    James Bessen, What Good is Free Software?, in GOVERNMENT POLICY TOWARD 
OPEN SOURCE SOFTWARE, supra note 5, at 12, 17-24 (discussing some recent successes of 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 61 

 

As the flagship open source software application, Tux and GNU/Linux hope 
to lead the way for greater use of open source generally, and of GNU/Linux 
specifically. 

A complex case, however, threatens to ground Tux and GNU/Linux in 
these efforts.  A small software company, SCO, seeks recourse from IBM, 
claiming that IBM injected SCO’s proprietary software into the GNU/Linux 
operating system without permission and thereby breached contracts between 
the two.17  IBM distributes GNU/Linux.  Along with thousands of other 
programmers and organizations around the world, IBM contributes open 
source code to the operating system.  If the claims are true, SCO may have a 
copyright infringement action against GNU/Linux end users who will 
number in the tens, or even hundreds, of thousands.18  Thus, the situation 

                                                                                                               
open source software, but noting that “the majority of software produced” is proprietary 
software that is “either self-developed or custom”). 

17.    See Steve Lohr, No Concession from I.B.M. in Linux Fight, N.Y. TIMES, June 14, 
2003, at C1 (describing the suit and noting concern caused by the suit among corporate 
technology buyers), available at http://www.nytimes.com; SCO Files Suit Against IBM, at 
http://www.sco.com/ibmlawsuit (last visited Oct. 5, 2003) (giving plaintiff’s web site which 
describes the suit and providing links to documents filed by SCO); see also McGowan, SCO 
What?, supra note 3, at 17-22 (describing and analyzing certain issues raised by the SCO 
case). 

18.    Indeed, SCO has followed its allegations against IBM to this conclusion and has 
announced plans to seek licensing fees from certain institutional Linux users.  See David 
Bank, SCO Announces Plans to Seek Licensing Fees from Linux Users, WALL ST. J., July 22, 
2003, at B5 (noting that SCO has retained David Boies, an attorney “who played a major role 
in the government’s antitrust case against Microsoft”), available at 2003 WL-WSJ 3974680.  
The move against users is related to the suit against IBM.  SCO has a copyright infringement 
case against users of Linux if its allegations against IBM are true – that IBM (or others, for 
that matter) in fact incorporated SCO’s code into Linux without permission. 

The following two examples illustrate how SCO followed through on its announcement 
to seek recourse from Linux users.  During the first week of March, 2004, SCO sued 
AutoZone and DaimlerChrysler for using Linux.  See Complaint at 1, SCO Group, Inc. v. 
Autozone, Inc. (D. Nev. Mar. 3, 2004) (No. CV-S-04-0237-DWH-LRL) [hereinafter 
AutoZone Complaint], available at http://sco.tuxrocks.com/Docs/AZ/AZ-0.pdf (last visited 
Oct. 17, 2004); Complaint at 1, SCO Group, Inc. v. DaimlerChrysler Corp. (Mich. Cir. Ct. 
Mar. 3, 2004) (No. 04-056587-CK) [hereinafter DaimlerChrysler Complaint], available at 
http://www.groklaw.net/pdf/sco-dcx.pdf (last visited Oct. 17, 2004); see also David Bank, 
SCO Broadens Its Attack on Linux, WALL ST. J., Mar. 4, 2004, available at 2004 WL-WSJ 
56921950. 

Although both actions spring from the use of Linux, they are different.  SCO’s suit 
against AutoZone is in federal district court, based on copyright infringement.   AutoZone 
Complaint, at 6-7, ¶¶ 20-22.  As of October, 2004, the action against AutoZone is stayed 
 



62 RUTGERS LAW JOURNAL [Vol. 36:53] 

threatens customer confidence in the copyright-based licensing system, 
underpinning not only GNU/Linux, but also many other open source 
software products.19 
                                                                                                               
pending the outcome of the IBM, Novell, and Red Hat cases, although the court has allowed 
SCO and AutoZone to take “limited expedited discovery related to the issue of preliminary 
injunctive relief.”  SCO Group, Inc. v. Autozone, Inc., No. CV-S-04-0237-RCJ-LRL, at 1-2 
(D. Nev. Aug. 6, 2004) (order granting stay motion), available at 
http://www.groklaw.net/pdf/AZ-35.pdf (last visited Oct. 17, 2004); see also Bob Mims, Judge 
Dismisses Utah Software Firm’s Suit Against DaimlerChrysler, SALT LAKE TRIB., July 22, 
2004, available at 2004 WL 59302116.  The stay order also required the parties to “submit a 
letter to the [c]ourt every [ninety] days as to the status” of SCO’s cases against IBM, Novell, 
and Red Hat.  Autozone, No. CV-S-04-0237-RCJ-LRL, at 1. AutoZone then filed an 
emergency motion for stay of discovery, which was denied in September, 2004. However, the 
judge indicated that if Novell wins in SCO’s case against it, then the AutoZone case would be 
over.  Autozone, No. CV-S-04-0237-RCJ-LRL (D. Nev. Sept. 23, 2004) (order denying 
AutoZone’s emergency motion for stay of discovery).  For an unofficial transcript of the 
hearing on Autozone’s emergency motion for a stay, see 
http://www.groklaw.net/article.php?story=20040910123928788. 

The suit against DaimlerChrysler is in Michigan state court, based on a license agreement 
that SCO has with DaimlerChrysler.  DaimlerChrysler Complaint, at 5, ¶¶ 19-20.  SCO alleges 
that DaimlerChrysler is in breach of the agreement for failing to provide a certification that it 
is not in violation of the agreement’s provisions regarding the use of Linux.  Id. at 7, ¶¶ 27-28.  
DaimlerChrysler filed a motion for summary disposition on the same day it answered the 
complaint.  Motion for Summary Disposition, SCO Group, Inc. v. DaimlerChrysler Corp. 
(Mich. Cir. Ct. Apr. 15, 2004) (No. 04-056587-CKB), available at 
http://www.sco.tuxrocks.com/Docs/DC/DC-2004-04-15-A.pdf (last visited Oct. 17, 2004); 
Answer and Affirmative Defenses, SCO Group, Inc. (No. 04-056587-CKB), available at 
http://www.groklaw.net/pdf/DCAns.pdf (last visited Oct. 17, 2004).  All of SCO’s claims 
against the auto manufacturer were eventually dismissed, except for the claim relating to 
whether DaimlerChrysler was late in responding to SCO’s demand to provide certification 
that it had not violated the terms of the agreement.  Mims, supra; Scott Morrison, Court Blow 
for SCO’s Linux Campaign Software, FIN. TIMES, July 22, 2004, available at 2004 WL 
87882502. 

19.    A definition of the term “open source software” is in order here.  The term’s 
meaning arises in part from a technological aspect of software:  it can have a source code 
form, or an object code form.  Putting aside innumerable technical distinctions, humans can 
read the source code form and use it to write software.  The source code is then processed or 
compiled into object code form, which a computer can read and execute.  Possession of the 
software’s source code allows one to examine the internal operation of the program to see how 
it was designed and written.  If a person has only the object code, doing this is much more 
difficult.  See Vetter, supra note 7, at 578-82 (relating a model of computing to the source and 
object code forms of software and discussing the resulting implications). 

Traditionally, most software provided users only the object code form of the computer 
program.  Thus, the term “open source software” signals that the source code form is also 
provided or made available.  In this sense, the source is “open.”  There are other nuances to 
the term’s meaning, but at bottom it means that source code is available.  This is important 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 63 

 

Even if SCO’s claims are eventually shown to be baseless, or that the 
users have viable defenses, the suit endangers Tux’s momentum and growth.  
Some may see that the only bright side to the suit is that it may jolt the open 
source software community to reexamine licensing and other practices to 
preventively counter such problems in the future.20  However, the suit also 
puts the GPL’s infectious terms front and center in the open source debate.  
One IBM countermove is its allegation that SCO has itself distributed 
GNU/Linux under the GPL, and thus SCO’s claim to proprietary rights in the 
code violates the GPL.21  In other words, under this theory, any proprietary 

                                                                                                               
because such availability enables distributed, collaborative computer program development 
among far-flung programmers with lesser centralized control than traditionally found in 
software development projects.  See id. at 567-68 (noting that the availability of source code 
over the internet allows open source programmers to share source code royalty-free and 
collaborate in self-organized groups to develop software); see also McGowan, Legal 
Implications, supra note 4, at 253.  This mode of development is a hallmark of the open 
source movement, and a progenitor of its success.  See generally Benkler, supra note 4, 
434-36 (postulating a formal model describing collaborative peer production for information 
outputs such as open source software). 

20.    See John C. Dvorak, Killing Linux:  Linux and the Whole Open-Source Movement 
are in Peril, PC MAG., June 1, 2003, available at 2003 WL 5729467 (arguing that the open 
source community is neither taking the suit seriously enough, nor addressing the underlying 
risk of open source programming – that a contributor who, unbeknownst to the rest of the 
group, injects protected code into a project). 

In the summer of 2004, the Linux operating system kernel group, under the direction of 
Linus Torvalds, implemented a new practice:  requiring programmers who submit software 
code to the project to include a “Developer’s Certificate of Origin” field in order to track 
submissions and attribute them to the submitting programmer.  See Larry Greenemeier, Linux 
Process Change Raises Questions, INFO. WK., May 31, 2004, available at 2004 WL 
61411477. 

21.    IBM’s sixth counterclaim alleges that SCO breached the GNU General Public 
License, in part by “seeking to impose additional restrictions on the recipients of programs 
licensed under the GPL, including IBM contributions, distributed by SCO.”  Counterclaim at 
33-34, SCO Group, Inc. v. Int’l Bus. Machs. Corp. (D. Utah 2004) (No. 2:03CV-0294 DAK) 
[hereinafter IBM Counterclaim], available at 
http://www.sco.com/ibmlawsuit/20040329_ibm_2nd_amended_counterclaim.pdf (last visited 
Oct. 17, 2004); see Stephen Shankland, Judge Orders SCO to Show Linux Infringement, at 
http://news.com.com/2102-7344_3-5114689.html (last modified Dec. 5, 2003) (discussing a 
court order requiring SCO to produce information in response to an interrogatory relevant to 
IBM’s argument “that SCO’s distribution of a Linux product means it has agreed to the GPL’s 
terms and therefore given permission to use that particular Unix technology in Linux”); see 
also Eben Moglen, SCO: Without Fear and Without Research 3-4 (2003), at 
http://www.osdl.org/docs/osdl_eben_moglen_second_statement.pdf (last visited Oct. 17, 
2004) (arguing that IBM’s defense of asserting the GPL against SCO is likely to be effective). 



64 RUTGERS LAW JOURNAL [Vol. 36:53] 

SCO code would be converted to open source software under the GPL’s 
infectious terms.22 

If the SCO suit suggests reexamining licensing and other practices for 
open source software, this reexamination should include the difficult 
questions raised by this suit about optimal methods, from a licensing 
perspective,23 for open source software to coexist with proprietary software.24  

                                                                                                               
22.    IBM alleges that SCO distributed Linux products under the GPL, and “[b]y so 

doing, SCO accepted the terms of the GPL . . . both with respect to source code made 
available by IBM under the GPL and with respect to SCO’s own Linux distributions.”  IBM 
Counterclaim, supra note 21, at 33. 

When someone intentionally publishes software for distribution under the GPL, the code 
will be open source software.  But see McGowan, Legal Aspects, supra note 7, at 13-14 
(noting that the GPL does not specify a term for the license permission, which raises the issue 
of the licensor’s power to terminate the license: in some jurisdictions, without a specified 
term, the license is terminable at will by the licensor).  In arguing that the GPL would not 
apply to convert its code (alleged to be in GNU/Linux) to open source software, SCO relies on 
its assertion that IBM put the code into GNU/Linux without SCO’s authorization.  SCO is in 
effect saying that it should not matter if later it took GNU/Linux and redistributed it because 
any SCO code in the operating system was put there by others.  It is possible that a 
GNU/Linux distribution could have passed through SCO without it ever knowing its code was 
(if it was) in the distribution; GNU/Linux has millions of lines of source code.  Open source 
software distributors often do not assess and evaluate every line of code merely to redistribute 
the product. 

23.    See Robert W. Gomulkiewicz, De-Bugging Open Source Software Licensing, 64 U. 
PITT. L. REV. 75, 77, 100-03 (2002) (noting that “[c]ommercial software developers suffer 
because they have difficulty discerning how open source licensed software may affect their 
intellectual property” and proposing the creation of an open source license organization 
(OSLO) dedicated to maintaining and improving “buggy” open source licenses). 

24.    When I use the term “proprietary software” in this Article I mean either a software 
product or other licensed software whose licensor requires royalties for use of the software, 
either in an up-front payment or on an ongoing basis.  In addition, the term means software 
with narrow permissions for use and for which the source code is not disclosed or made 
available to the end users in the typical license transaction.  In essence, I use the term to refer 
to the historically dominant practices used by software providers to protect and license their 
computer programs.  However, some proprietary software allows some disclosure of the 
source code, particularly in the situation where the software vendor is selling software to other 
developers.  In these cases, the usual restriction is that the customer-developer, while she has 
access to the source, may not distribute the source code to her customers.  Microsoft has even 
launched its own “Shared Source Initiative . . . allowing customers, partners, governments, 
and competitors” access to its source code.  See Microsoft, Shared Source Initiative 
Frequently Asked Questions, at 
http://www.microsoft.com/resources/sharedsource/Initiative/FAQ.mspx (Feb. 1, 2004).  
However, it does not want that practice to be confused with “open-sourcing.”  Id. 

OSS offers the significant benefits of community building, customer feedback, code 
transparency, and custom application development.  The Shared Source Initiative 

 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 65 

 

Such coexistence is essential for the long-term growth and viability of the 
open source movement.  It is unlikely that the entire software industry will 
convert to the open source approach.  Licensing coexistence relates to 
functional coexistence when open source and proprietary software must 
interoperate.  Thus, open source software’s licensing stance toward propriety 
software is critically important. 

There are an increasing number of similar open source licenses, but they 
vary substantially in implementation.  GNU/Linux uses the GPL, a license 
authored by the organization that creates the “GNU” part of the GNU/Linux 
operating system.25  The GPL is an “infectious” license in the sense that I 
describe below.  As such, its infectious terms are my foil to argue that such 
terms do not benefit the open source movement.  The GPL is the legal 
foundation for GNU/Linux, an increasingly ubiquitous and critical 
component of the internet.  Thus, while formally a private law instrument, its 
pervasiveness takes on a quasi-public character, further elevating the 
importance of its terms.26 

An infectious license contemplates extending its terms to other software 
that is intermixed or coupled with open source software.  The legal basis for 
this is potentially two-fold.  The infectious license scope arises either from a  

                                                                                                               
seeks to afford these benefits while preserving valuable intellectual property rights 
in software. 

 Id. 
25.    GPL, supra note 8; see also Zittrain, supra note 6, at 269 (comparing the GPL to 

the license for the Unix variant BSD, which has some elements of the GPL but does not 
include infectious terms). 

26.    In labeling the GPL as “quasi-public,” I draw upon the traditional distinction 
between the public law categories, such as constitutional, criminal and regulatory law, and the 
laws governing private arrangements and interactions, such as contracts, property and torts.   
Morton J. Horwitz, The History of the Public/Private Distinction, 130 U. PA. L. REV. 1423, 
1424 (1982); see also Duncan Kennedy, Stages of the Decline of the Private/Public 
Distinction, 130 U. PA. L. REV. 1349, 1354-57 (1982) (arguing that the public/private 
distinction has been “loopified,” and the line between public and private has become so 
blurred that the distinction is no longer workable).  Given the importance of GNU/Linux to 
the internet, its code has a public character.  Further, code can regulate in ways analogous to 
law’s ability to regulate.  LAWRENCE LESSIG, CODE AND OTHER LAWS OF CYBERSPACE 50-53 
(1999). 



66 RUTGERS LAW JOURNAL [Vol. 36:53] 

broad conception of software derivative works,27 or from expansive 
conditions on the permission to violate the reproduction right, such as 
permission to copy and use the software, or from hybrid effects of both.  
Both of these legal bases, however, are uncertain due to a variety of issues in 
copyright infringement of computer program source code.28  Added to this 
uncertainty are questions about the status of open source licenses as 
contracts.  Often this status question cannot be determined in the abstract 
when one considers only the license instrument itself.29 

Some commentators posit that infectious terms intend to convert 
proprietary software into open source software.30  Whether this theory is true 
                                                                                                               

27.    See McGowan, Legal Aspects, supra note 7, at 5, 16-27 (explaining that “A might 
argue that if executing B’s program caused A’s program to be copied and to interact with B’s 
program, then the combination of the two programs amounted to a work based on A’s 
program, and therefore to a derivative work under the GPL”). 

28.    In latter sections of this Article I catalogue a number of factors that contribute to 
uncertainty for copyright infringement of computer software.  These factors fall into three 
categories:  (i) jurisdictional variety for the doctrines determining reproduction right and 
derivative work right infringement, and latent, linguistic ambiguity in the formulation of such 
doctrines, including such issues as insufficient specification of their scope of coverage; 
(ii) inconsistency in the application of these doctrines to specific disputes within jurisdictions, 
or across jurisdictions when multiple Federal Circuit Courts of Appeals have adopted the same 
doctrine; and (iii) indeterminacy in characterizing and finding the specialized facts underlying 
these technology-intensive disputes.  While these three categories are obviously interrelated, 
their aggregate effect is to make many case outcomes at least partly inestimable in this area of 
rapidly advancing technology.  See MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON 
COPYRIGHT § 13.03[A][1][d], at 13-51 (2003) [hereinafter NIMMER] (“[T]he uncertainty 
created by the ad hoc nature of the software cases . . . hampers development and progress in 
the computer software field.  Software developers have no adequate guidelines regarding what 
level of independent development is required to avoid copyright infringement.”). 

29.    Cf. McGowan, Legal Aspects, supra note 7, at 9-16 (discussing a number of issues 
for the GPL, including questions of formation, issues of privity, revocability, assignment, 
term, and notice of the license provisions, and positing that for some of these issues the GPL 
might be enforceable as a contract depending on the provision to be enforced and the facts of 
the case). 

In addition, these questions about open source licenses suggest alternative motivations 
for user adoption of particular licenses.  See McGowan, SCO What?, supra note 3, at 33-34 
(suggesting that the GPL terms may not necessarily be optimal for the developers who use 
them, but are employed in a trademark sense as a quasi-brand identity espousing certain 
development procedures or ideological beliefs developers may find more important than the 
terms themselves). 

30.    See Christian H. Nadan, Open Source Licensing:  Virus or Virtue?, 10 TEX. INTELL. 
PROP. L.J. 349, 359 (2002) (“Thus, if you incorporate some GPL code in your proprietary 
software product, arguably your whole proprietary product becomes open source and must be 
licensed by you under the GPL.”); see also Daniel Lyons, Linux’s Hit Men, FORBES, Oct. 14, 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 67 

 

or not, infectious terms create disincentives against closely coupling and 
intermixing open source and proprietary software.  Sometimes close 
coupling and intermixing will be desirable.  Despite this fact, proprietary 
software vendors may implement defensive licensing provisions to guard 
against infectious open source terms, as might be expected from the rule of 
action and reaction.31  For example, a proprietary license might prohibit 
distribution of the software in intimate combination with software whose 
license requires source code availability. 

Moreover, it is not clear that infectious terms are necessary to support 
the growth of open source software.  Apart from any debate about infectious 
licensing terms, as a privately-provisioned public good, open source software 
is an increasingly valuable part of the worldwide public and private 
computing infrastructure.  It has entered markets dominated by proprietary, 
fee-based software and developed growing niches.  It has done this without 
any dependence on, and perhaps due to its lack of, prices for ongoing use, 
although most open source software licenses allow distributors to charge for 
distribution and other complementary items.  Thus, software application 
markets with open source products are mixed markets.  Within these 
markets, infectious terms diminish opportunities to aggregate or combine 
open source and proprietary software in cases where it would be beneficial 

                                                                                                               
2003 (discussing accusations that computer code licensed under the GPL could be used “to 
creep into commercial products so it can . . . force open those products”), available at 
http://www.forbes.com/2003/10/14/cz_dl_1014linksys.html.  But cf. Zittrain, supra note 6, at 
269 (contending that the central aim of the GPL is to prevent the “proprietization” of 
derivative software). 

31.    For example, some vendors of proprietary software have implemented license 
agreements that explicitly prohibit intermixing proprietary software with open source 
software.  See, e.g., Master End-User License Agreement for Microsoft Software, at 
http://msdn.microsoft.com/subscriptions/downloads/EULA_MSDN_Jan03.pdf (last visited 
Dec. 20, 2004).  Section 3.2.2 of this license states that it prohibits distributing the software or 
creating derivative works of the software if doing so would require the software to be: (i) 
disclosed or distributed in source code form; (ii) licensed for the purpose of making derivative 
works; or (iii) redistributable at no charge.  Id. at 4. 

Besides directing marketing efforts against open source software, proprietary software 
vendors might be expected to ensure that resources under their control are not deployed or 
deployable to assist the open source movement.  Further, one might expect political efforts to 
emerge to counter the mounting interest in open source software by governments worldwide, 
some of which perceive open source as a way to lower information technology costs, while 
others see it as a technology transfer and local-ownership opportunity. 



68 RUTGERS LAW JOURNAL [Vol. 36:53] 

and where market conditions would allow prices to reflect principally the 
value component from the proprietary software. 

To develop these themes, I proceed as follows.  Part II reviews open 
source software licensing and the paradigmatic infectious terms of the GPL.  
My emphasis is to convey a general understanding of the prevalent licensing 
approaches for open source software.  Then, I sketch how far-flung 
developers collaborate to create such software.  Against this background, I 
present the GPL’s infectious terms and discuss how they operate, or might be 
thought to operate. 

Part III describes the technological framework for infectious scope.  This 
part provides a technical description of software’s ability to intermix and 
couple with other software.  Programmers can modify and extend a 
program’s capabilities in many ways.  These details impact whether a 
license’s infectious terms will reach other software.  For example, in 
GNU/Linux, combinations of user programs and the operating system do not 
violate the GPL-based infectious license as applied in the Linux operating 
system kernel.  But other combinations, within the Linux kernel component 
of GNU/Linux, may run afoul of infectious terms.  Some understanding of 
the continuum of ways to modify, extend, intermix or couple software 
programs is necessary to understand the issues raised by infectious terms. 

Next, Part IV examines the GPL’s infectious terms within the continuum 
developed in Part III.  Both the technological continuum and the GPL’s 
infectious terms post minimal boundaries.  So, Part IV also relates how some 
better boundaries have come about from practical implementations of the 
GPL and from a companion license that sheds light on the GPL:  the Lesser 
GPL. 

Part V develops and applies a descriptive model that isolates infectious 
terms and relates their potential legal bases to the technological framework 
for infectious scope.  The legal bases which might anchor infectious terms 
include copyright’s distribution and reproduction right, and derivative work 
right.  Copyright’s derivative work right is perhaps the most ill-defined and 
hard to qualify of copyright’s exclusive rights.32  Case law reflects 

                                                                                                               
32.    See NIMMER, supra note 28, § 3.03[C][3], at 3-22.3 (discussing a number of 

paradigms for derivative works, and then noting that the “foregoing discussion ventilates a 
bewildering number of options for conceptualizing derivative works”); Lydia Pallas Loren, 
The Changing Nature of Derivative Works in the Face of New Technologies, 4 J. SMALL & 
EMERGING BUS. L. 57, 84-93 (2000) (arguing that copyright’s derivative work right should not 
prohibit creation by others of integrated digital works that electronically reference, but do not 
copy, the original digital work). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 69 

 

uncertainty as to whether a software work is a derivative of an earlier work.33  
Complicating the situation is the practical and epistemological question as to 
whether the derivative work right is redundant given the reproduction right’s 
application to non-literal infringement.34 

Infectious terms seek to apply an open source licensing scheme to 
“other” software.  The question then becomes:  what “other” software do 
these terms reach?  One possible answer is that their reach is coextensive 
with copyright’s derivative work right, assuming that the derivative work 
right reaches more broadly than the reproduction right.  If infectious terms 
are based on, and coextensive with, the derivative work right, then they are 
uncertain in their reach due to the vagaries of the scope of the derivative 
work right.  The second possible basis is that infectious terms reach as far as 
a licensor’s power to condition reproduction and use of a work.  The 
interface between copyright, contract, and licensing law, also creates an area 
of uncertainty, particularly for licenses such as most open source licenses, 
where there typically is no explicit assent to the terms of the license. 

Thus, uncertainty is the common denominator among the possible legal 
bases underpinning infectious terms.  The uncertainty has costs of its own, 
but it also increases the trouble infectious terms create for software 
interoperability.  Both of these impact the efficacy of infectious terms, which 
in turn influence the incentive effects arising from them. 

Finally, Part VI concludes by emphasizing the implications of these 
themes. 

                                                                                                               
33.    Compare Micro Star v. FormGen, Inc., 154 F.3d 1107, 1111-13 (9th Cir. 1998) 

(determining that FormGen’s distribution of player-created “Duke Nukem” game levels could 
constitute infringement of the derivative work right because the audiovisual displays were 
embodied in concrete form in the game’s MAP files), with Lewis Galoob Toys, Inc. v. 
Nintendo of Am., Inc., 964 F.2d 965, 967-69 (9th Cir. 1992) (determining that Lewis 
Galoob’s “Game Genie,” which  allowed players to speed up and otherwise alter the output 
from a Nintendo game console, would not constitute a derivate work because the displays did 
not assume a permanent form).  See also Montgomery v. Noga, 168 F.3d 1282, 1290-93 (11th 
Cir. 1999) (finding that the software was a derivative work because testimony indicated that 
anywhere from seventy to one hundred percent of the original code remained unchanged); 
United States v. Manzer, 69 F.3d 222, 227 (8th Cir. 1995) (finding testimony that “the 
computer files sold . . . were more than seventy-percent similar to the copyrighted software” 
was sufficient to uphold a finding that a derivative work was created). 

34.    Loren, supra note 32, at 63-64; see also NIMMER, supra note 28, § 8.09[A], at 
8-138.18 (“This right [the adaptation right] may be thought to be completely superfluous 
. . . .”). 



70 RUTGERS LAW JOURNAL [Vol. 36:53] 

II.  OPEN SOURCE SOFTWARE AND INFECTIOUS LICENSE TERMS 

The David and Goliath story of GNU/Linux versus Microsoft’s 
Windows juggernaut is only one facet of the startling open source software 
story.  We do not know how the modern tale will end.  Will the penguin beat 
the giant in the market, or will acrimonious co-existence reign?  Regardless, 
many would agree that the open source movement has irreversibly changed 
the world of software.  Open source has computer scientists puzzling about 
whether distributed ad hoc software development teams can or do 
collaboratively outperform traditional models for software development.35  
It has economists investigating why people volunteer their time on evenings 
and weekends to write and contribute source code to thousands of open 
source projects.36  It has business academics questioning whether sustainable 
business models and profit opportunities are possible when valuable software 
is given away for free and those who charge for aggregating and distributing 
such software have little formal control over their primary production 
input.37 
                                                                                                               

35.    This literature is growing too quickly to survey in a single footnote.  For some 
paradigmatic examples, see Jamie Dinkelacker & Pankaj K. Garg, Corporate Source:  
Applying Open Source Concepts to a Corporate Environment 1 (2001) (Position Paper at 
ACM Workshop:  Making Sense of the Bazaar: First Workshop on Open Source Software 
Engineering) (describing the application of “Open Source concepts, perspectives and 
methodologies within the corporate environment” including its debugging success); Yutaka 
Yamauchi et al., Collaboration with Lean Media:  How Open-Source Software Succeeds 329 
(2000) (Paper at ACM Conference on Computer Supported Cooperative Work) (describing 
that although software development has traditionally been a “coordination-intensive process” 
recent interest and advances in computer supported cooperative work facilitated the 
geographically distributed nature of much open source software development). 

36.    The economics literature on open source software is also growing extensively.  
See Justin P. Johnson, Open Source Software:  Private Provision of a Public Good, 11 J. 
ECON. & MGMT. STRATEGY 637, 637-62 (2002) (applying game theory to model open source 
software development as the private provision of a public good); David P. Myatt & Chris 
Wallace, Equilibrium Selection and Public-Good Provision: The Development of Open-
Source Software, 18 OXFORD REV. ECON. POL’Y 446, 448 (2002) (exploring collective action 
problems such as free-riding and coordination costs in the context of open source software 
development); Josh Lerner & Jean Tirole, The Simple Economics of Open Source 35 (Mar. 
2000) (discussing the motivations behind participation in open source projects, and inviting 
further study on the subject), available at http://papers.nber.org/papers/w7600.pdf.  

37.    See Robert Young, Giving It Away:  How Red Hat Software Stumbled Across a 
New Economic Model and Helped Improve an Industry, in OPEN SOURCES:  VOICES FROM THE 
OPEN SOURCE REVOLUTION, supra note 2, at 113-14 (describing the genesis of Red Hat and 
how the company founders discovered the growing popularity of the emerging Linux 
operating system in the early 1990s, relating that:  “When we’d ask where this Linux stuff was 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 71 

 

Most facets of the story, however, focus on a license.  The open source 
software license is the foundation for this new software production method, 
this new economic phenomenon for highly-leveraged volunteerism, and this 
new, strange, business opportunity. 

The next section explains open source licensing and the innovative 
software development approach it enables.  This is given as general 
background for a subsequent discussion of the GNU/Linux license, the 
GPL.38  The GPL is one of the most widely used open source licenses.  It 
also expresses the infectious terms that are the focus of my inquiry.  
Subsequent sections focus on the GPL specifically and explain the potential 
mode and scope of its infectious terms. 

A.  Open Source Licensing and Software Development 

The open source licensing approach has common elements that most, but 
not all, open source software licenses implement.  Open source software 
projects originate under one of many available open source licenses.39  This 

                                                                                                               
coming from, we’d get answers like, ‘It’s from the programmers according to their skill to the 
users according to their needs.’”). 

38.    A typical distribution of the GNU/Linux operating system employs other licenses in 
addition to the GPL because other components in the distribution are under such licenses.  
Thus, while the GNU “part” of the distribution and the Linux kernel “part” are under the GPL, 
there are other components in most distributions under other licenses.  However, in 
GNU/Linux, measured by the lines of source code covered by particular licenses, the GPL 
dominates:  one commentator’s analysis rates the GPL as the license designated for 50.36% of 
the source code in the Red Hat GNU/Linux 7.1 distribution.  David A. Wheeler, More than a 
Gigabuck:  Estimating GNU/Linux’s Size, at http://www.dwheeler.com/sloc/redhat71-
v1/redhat71sloc.html (last modified July 29, 2002) (analyzing the Red Hat Linux distribution 
along the metric of source lines of code (SLOC), which, using automated software tools, in 
essence counts the lines of source code for each of the various components in the Red Hat 
Linux distribution, and in doing so notes the license applied for each component). 

39.    There are a number of web sites listing open source licenses.  See The Approved 
Licenses, at http://opensource.org/licenses (last visited Oct. 21, 2004).  These licenses are 
listed by the Open Source Initiative (OSI), a certification system for identifying licenses that 
meet the certification mark’s definition of “open source.” Id.; see Various Licenses and 
Comments about Them, at http://www.fsf.org/licenses/license-list.html (last visited Oct. 21, 
2004). 

Due to the growing number of licenses, and the numerous other issues that corporate 
information technology departments face in deploying open source software, a company 
named Black Duck Software recently formed to offer software to help these endeavors.  See 
Black Duck:  Leading Solutions for Software Compliance Management, at 
http://www.blackducksoftware.com (last visited Dec. 20, 2004) (noting that the company 
provides an automated solution for open source code detection, license validation and 
 



72 RUTGERS LAW JOURNAL [Vol. 36:53] 

means that the programmer or programmers who start a project typically 
select (or, more rarely, write) a license early in the project’s life cycle.  In 
choosing a license, the programmers adopt a copyright-based licensing 
regime that governs the software and grants conditional rights to others.40  
Thus, at bottom, open source software relies on the copyright status of 
computer programs as literary works, but deploys the rights arising from that 
status in a unique way. 

The common approach among open source licenses is a conditional 
permission to violate one or more of the rights available under copyright.  
Thus, for example, a user may be allowed to modify the software.  The 
license excuses any resulting violation of the derivative work or reproduction 

                                                                                                               
management, and software auditing and certification).  Black Duck’s system has to be aware 
of the various licenses in order to provide the scanning, filtering, and automated intellectual 
property management capabilities it offers.  Thus, their materials note the following:  “[A]s of 
January 2004, the Open Source Initiative (OSI) has certified 47 licenses that comply with the 
Open Source Definition.  (See http://opensource.org/licenses for the most up to date list of 
OSI approved licenses.)  More than 20 additional uncertified Open Source licenses are also in 
common use.” 

White Paper:  Black Duck Software:  Solutions for Software IP Risk Management 4, 
available at http://www.blackducksoftware.com/wprequest.php (last visited Mar. 6, 2004) 
(downloaded and on file with author). 

40.    It is unclear to what extent programmers are aware of their license choice in the 
specific.  They may know that they need to place their project under a license.  See 
SourceForge.net, Project: Gaim: Summary, at http://sourceforge.net/projects/gaim (last visited 
Dec. 20, 2004) (showing the project description for an open source program, one field of 
which is for designation of the specific license to govern the project). 

Whether programmers shop for a specific license, read reviews or analysis of licenses, or 
merely pick one they have heard about is unknown.  See, e.g., Berkman Center for Internet & 
Society at Harvard Law School, Open Code – House of Licenses, at 
http://cyber.law.harvard.edu/openlaw/licenses (last visited Dec. 20, 2004) (listing “some of 
the current free, open, community, public, copyleft and right” licenses); Electronic Frontier 
Foundation (EFF), Guide to Licenses, at 
http://www.eff.org/IP/Open_licenses/licenseguide.html (last visited Dec. 20, 2004) (listing 
and describing a variety of open source licenses for documentation, music, and software); The 
GNU Operating System - Free Software Foundation, Licenses, at  
http://www.gnu.org/licenses/licenses.html (last visited Dec. 20, 2004) (listing and evaluating 
various open source licenses in terms of compatibility with the GPL); Open Source Initiative 
(OSI), Licensing, at http://www.opensource.org/licenses (last visited Dec. 20, 2004) (listing 
open source licenses in compliance with the “open source definition”). 

McGowan posits that programmers choose licenses for a trademark-like effect to 
communicate a social identity for the project rather than to have a specific legal effect.  See 
McGowan, SCO What?, supra note 3, at 33-34 (suggesting that the GPL is employed in a 
trademark sense). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 73 

 

right, provided that the user meets the conditions specified in the license.  
Thus far, this is unremarkable since this is the basic mechanism underlying 
all licensing.  What makes open source licensing unique is that the licenses 
permit a broad scope of activity and attach only a few conditions.41  This 
inverts the typical approach of a proprietary software license, which permits 
only a narrow range of use and attaches conditions with considerably 
different consequences. 

In open source software, the conditions signal the goals, reach, and effect 
of the license.42  The licenses express a governance continuum over the 
user’s activities.  They implement varying levels of control, but all are less 
restrictive than typical proprietary software licenses.  Thus, open source 
licenses stratify on a continuum.  I elaborate in the subsection below, 
describing the typical license-condition groupings in order of lesser to 
greater scope.  Then, I relate these groupings to open source software 
development norms and practices. 

                                                                                                               
41.    This approach is often referred to as “copyleft.”  See Ira V. Heffan, Copyleft:  

Licensing Collaborative Works in the Digital Age, 49 STAN. L. REV. 1487, 1491 (1997) 
(describing “copyleft” under the GNU General Public License as an “agreement that permits 
reproduction and distribution of their [programmer’s] works, but does not allow anyone to 
place further restrictions on them”); The GNU Operating System - Free Software Foundation, 
Licenses, at http://www.gnu.org/licenses/licenses.html (last visited Dec. 20, 2004) (“Copyleft 
is a general method for making a program free software and requiring all modified and 
extended versions of the program to be free software as well.”). 

42.    Because there is some uncertainty as to whether open source licenses will be 
enforced as contracts, at their least common denominator the written instrument will function 
as a copyright permission.  The potential for contract enforcement, however, is not irrelevant 
to the potential outcome, and can have a particularly important impact on the remedies 
available to the licensor.  See Sun Microsystems, Inc. v. Microsoft Corp., 188 F.3d 1115, 1122 
(9th Cir. 1999) (holding that whether Sun could enjoin Microsoft based on a license 
agreement from Sun to Microsoft for Sun’s Java technology depended on whether the license 
provisions in question were “license restrictions or separate [contractual] covenants.”).  In Sun 
Microsystems, the licensor, Sun, sought to have injunctive copyrights remedies apply.  Id.  
Microsoft’s position would have been improved in the dispute if the conditions at issue were 
contractual promises because in that case the default remedy is damages.  This would increase 
Sun’s requirements of proof, and give it less potential leverage over Microsoft. 



74 RUTGERS LAW JOURNAL [Vol. 36:53] 

1.  Conditioned Permissions for Copyright Protected Software 

Being “free” and “open” are often-described goals of open source 
software.  Nonetheless, some prominent open source products have licenses 
that enforce neither goal, but require only attribution.43  These licenses allow 
others to do practically anything with the software, including incorporation 
into proprietary software, as long as there is notice that the software 
originated from the open source project.  These licenses do not even require 
that the source code be available – a key norm of the open source movement.  
Thus, attribution-only licenses are the least restrictive type of licenses used 
for open source projects.44 

Most open source licenses impose more conditions than attribution-only 
licenses.  They impose additional conditions on the user’s permission to use, 

                                                                                                               
43.    The most prominent example of a free software product using this type of license is 

the Apache web server software.  Its license requires attribution in the form of an 
acknowledgment stating:  “‘This product includes software developed by the Apache Software 
Foundation (http://www.apache.org/).’”  Apache Software License, Version 1.1, at 
http://www.apache.org/LICENSE-1.1 (last visited on Nov. 11, 2003) [hereinafter Apache 
License]. 

The Apache license was adapted from what is known as the Berkley Software 
Distribution (BSD) license, used to release the source code of a “flavor” of the Unix operating 
system developed at Berkley. See Marshall Kirk McKusick, Twenty Years of Berkeley Unix: 
From AT&T-Owned to Freely Redistributable, in OPEN SOURCES:  VOICES FROM THE OPEN 
SOURCE REVOLUTION, supra note 2, at 42-46 (describing the initial decision to offer the entire 
BSD Unix flavor under the BSD license, due to the popularity of a networking component 
earlier offered under the license, and discussing a later, related lawsuit that pitted the other 
major flavor of Unix, at the time owned by AT&T, against the free BSD Unix distribution, the 
dispute being whether a small number of copyrighted AT&T components were present in the 
kernel of the BSD Unix). 

The BSD style license requires attribution indirectly by requiring persistency of the 
copyright notice, which includes the name of the original author.  See The BSD License 
(requiring redistributions in both source code and binary form to reproduce the copyright 
notice), available at http://www.opensource.org/licenses/bsd-license.php (last visited Nov. 12, 
2003); see also NetBSD’s Copyright and Licensing Terms, §§ 1, 2 (same), available at 
http://www.netbsd.org/Goals/redistribution.html (last visited Nov. 30, 2003); Sendmail 
License §§ 2, 3 (same), available at ftp://ftp.sendmail.org/pub/sendmail/LICENSE (last 
visited Nov. 11, 2003); The FreeBSD Copyright, §§ 1, 2 (same), available at 
http://www.freebsd.org/copyright/freebsd-license.html (last visited Nov. 30, 2003). 

44.    Given that attribution-only licenses do not require that the software be free of 
royalties, or that source code be available, there is some question as to whether 
attribution-only licenses are properly called free or open source software.  They are often 
categorized this way, however, because the programmers manage these projects using freely 
available source code and internet-based collaborative development. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 75 

 

modify, and redistribute the software.  The permission to use is effectively 
synonymous with the permission to copy and run the software,45 which 
practically all licenses grant.  Thus, one can freely download a copy of most 
open source software and use it in modified or unmodified form.46  Minimal 
conditions attach to this activity. 

                                                                                                               
45.    Open source software raises a particular version of a doctrinal puzzle springing 

from 17 U.S.C. § 117 (2000).  The puzzle is that § 117 allows an owner of a copy of a 
computer program to make an additional copy for statutorily defined reasons, including if the 
copy “is created as an essential step in the utilization of the computer program in conjunction 
with a machine and that it is used in no other manner.”  Id. § 117(a)(1).  The puzzle occurs 
because with open source software, it is difficult to determine under the licenses and common 
practices whether each licensee is also the owner of a copy, in particular when physical media 
(e.g., a CD-ROM) is not employed to distribute the software.  Traditional proprietary software 
licenses sought to characterize the transaction as a license that did not transfer ownership of a 
copy.  See Michael J. Madison, Reconstructing the Software License, 35 LOY. U. CHI. L.J. 275, 
314-15 & n.137 (2003) (discussing the right of an owner of a copy to run the program, and 
noting that:  “Limiting that right to the owner of the program meant, under the strictest reading 
of the statute, that software companies that merely licensed individual copies of their 
programs to customers could avoid having those copies made subject to the Copyright Act.”) 
(second emphasis added).  While one of the original reasons for § 117 was to allow users to 
make backup copies of programs, it has become more important since courts have adopted the 
notion that a “RAM copy” is a violation of copyright’s reproduction right.  See Joseph P. Liu, 
Owning Digital Copies:  Copyright Law and the Incidents of Copy Ownership, 42 WM. & 
MARY L. REV. 1245, 1256-63 (2001) (describing the genesis and evolution of the RAM copies 
doctrine, and noting that in the case spawning that doctrine the user’s argument based on 
§ 117 failed because the court found the user to be a mere licensee, and not an owner of a 
copy). 

This impacts open source because the licenses typically do not contain the provision 
found in proprietary licenses characterizing the transaction as not involving any transfer of 
ownership of a copy.  On the other hand, it is not clear from open source licenses that there is 
such a transfer.  See generally Lothar Determann & Andrew Coan, Spoiled Code?:  SCO v. 
Linux:  A Case Study in the Implications of Upstream Intellectual Property Disputes for 
Software End Users, CYBERSPACE LAW. Jan. 2004 (noting that the GPL does not seem to have 
any characteristics of a sale of ownership of a copy).  But see Eben Moglen, Questioning 
SCO: A Hard Look at Nebulous Claims 3-4 (2003), at 
http://www.osdl.org/docs/osdl_eben_moglen_position_paper.pdf (last visited Aug. 4, 2003) 
(noting that copyright law “contains a special limitation on the exclusive right to copy with 
respect to software,” and arguing that users who have copies of software can execute the 
copies on one machine, but not explicitly addressing whether open source licensees in fact 
have “copies” as contemplated by § 117).  See generally McGowan, SCO What?, supra note 
3, at 18-20, 22, 31 (describing and analyzing the issue of § 117 copies in the context of the 
SCO case). 

46.    In this context, the software is modified if someone changes the source code.   



76 RUTGERS LAW JOURNAL [Vol. 36:53] 

When the user redistributes the software in modified or unmodified 
form, conditions of greater consequence attach.47  First, the redistributors 
must make the source code available.48  Second, the redistributors may not 
charge royalties for use,49 although aggregators and redistributors are 
typically allowed to charge for the distribution service and other services, 

                                                                                                               
47.    Joseph Scott Miller, Allchin’s Folly:  Exploding Some Myths About Open Source 

Software, 20 CARDOZO ARTS & ENT. L.J. 491, 496-97 (2002) (noting that the “sharing 
requirement” under the GPL applies only to works distributed or published).  See generally 
Henry W. Jones, III, Impacts of Open Source Software on Your M&A Deal (describing 
considerations raised by open source software use in the event of a sale of a company or a sale 
of its assets), available at 
http://www.softwarebusinessonline.com/newsletter2_march04.htm#feature2 (last visited Oct. 
3, 2004). 

48.    See, e.g., GPL, supra note 8, preamble (“For example, if you distribute copies of 
such a program, whether gratis or for a fee, you must give the recipients all the rights that you 
have.  You must make sure that they, too, receive or can get the source code.”); Mozilla Public 
License Version 1.1, § 3.2 [hereinafter Mozilla Public License] (“Any Modification which 
You create or to which You contribute must be made available in Source Code form . . . .”), 
available at http://www.mozilla.org/MPL/MPL-1.1.html (last visited Nov. 11, 2003); Nokia 
Open Source License Version 1.0a, § 3.2 [hereinafter Nokia Open Source License] (same), 
available at http://www.opensource.org/licenses/nokia.php (last visited Nov. 30, 2003); Sun 
Public License Version 1.0, § 3.2 [hereinafter Sun Public License] (same), available at 
http://www.opensource.org/licenses/sunpublic.php (last visited Nov. 30, 2003). 

The Open Source Definition (OSD) provides that “[t]he program must include source 
code.”  Open Source Definition, § 2 [hereinafter OSD], available at 
http://www.opensource.org/docs/definition.php (last visited Dec. 20, 2004).  The OSD, 
however, is not a license, but rather a specification for a certification program operated by the 
Open Source Initiative to classify open source licenses.  See Open Source Initiative (OSI), at 
http://www.opensource.org (last visited June 4, 2003) (“Open Source Initiative (OSI) is a non-
profit corporation dedicated to managing and promoting the Open Source Definition for the 
good of the community, specifically through the OSI Certified Open Source Software 
certification mark and program.”). 

49.    For example, the GPL and the Perl Artistic License contain provisions disallowing 
royalties, but allow fees for various services such as distribution, support and separately 
provided warranties.  GPL, supra note 8, § 1 (“You may charge a fee for the physical act of 
transferring a copy, and you may at your option offer warranty protection in exchange for a 
fee.”); Perl Artistic License, § 5 (prohibiting fees for the software itself, but allowing a 
“reasonable copying fee for any distribution” and fees charged for support), available at 
http://www.perl.com/pub/a/language/misc/Artistic.html (last visited Dec. 20, 2004). 

Other licenses use language granting “a world-wide, royalty-free, non-exclusive license.” 
Mozilla Public License, supra note 48, § 2.1; RealNetworks Public Source License Version 
1.0, § 2, available at http://www.helixcommunity.org/content/rpsl.html (last visited Nov. 30, 
2003); Sun Public License, supra note 48, § 2.1. 

The OSD provides that “[t]he license shall not require a royalty or other fee.” OSD, 
supra note 48, § 1. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 77 

 

such as warranty and customer support.50  Third, a redistributor must follow 
conditions relating to reapplication of the license terms to the redistributor’s 
licensees when it modifies and distributes the modified software.51  This 
reapplication provision requires further discussion. 

Consider two possibilities for the reapplication provision.  An open 
source license might say:  when you distribute your modified version of the 
software, you must reapply to your licensees all of the exact same license 
terms under which you took the software.  This is the strong scope of the 
provision.  The weak scope relaxes the condition.  It does not require the 
redistributor to reapply every license term, but delineates those that must be 
reapplied.  For example, the license might require redistributors to reapply 
key provisions such as source code availability or the prohibition on charging 
royalties, but allow other license terms to escape reapplication.  A relaxed 
reapplication provision creates a more flexible open source license.  The 
strong scope of the provision ensures that the original license’s terms “run 
with the code,” even as the software evolves through the process of 
collaborative development and distribution.52 

Open source licenses impose other conditions beyond the three I have 
discussed thus far.  These include the “infectious” terms I will discuss in 
detail below, and other provisions less central and relevant to my argument.  
A few examples from the latter group are provisions attempting to deal with 

                                                                                                               
50.    For GNU/Linux there are several companies that distribute the software and 

provide associated services.  The leading and most well know example is Red Hat.  It 
aggregates open source software components from a variety of sources, including some of its 
own open source software, to produce a GNU/Linux based “distribution” of the operating 
system.  Red Hat Linux 9 Web Page, at http://www.redhat.com/software/linux/personal (last 
visited May 31, 2003) (downloaded and on file with author).  The product description leads 
with:  “Red Hat Linux 9 combines the latest Linux technology from the Open Source 
community in one easy to use operating system.”  Id.  Red Hat charges for these distributions.  
Indeed, its GNU/Linux distribution has historically been available as “off-the-shelf” software 
in most computer retail stores. 

51.    See, e.g., GPL, supra note 8, § 2(b) (requiring that distributed modifications of GPL 
protected code be licensed under the GPL). 

52.    See McGowan, Legal Implications, supra note 4, at 244-45 (discussing the use of 
copyright-based open source licenses to try “to create de facto property rights” in the 
software). 



78 RUTGERS LAW JOURNAL [Vol. 36:53] 

the threat of software patents,53 provisions prohibiting discriminatory 
licensing,54 and provisions disclaiming warranties and indemnification.55   

While important, these non-central provisions are peripheral to the 
fundamental behavior driving the open source movement:  source code 
availability for freely sharable and modifiable software.  This behavior is 
enforced to some degree by open source licenses, but also takes significant 
conforming power from norms prevalent within the community of open 
source software developers, distributors, and users. 

                                                                                                               
53.    A common provision in open source software licenses is a termination clause 

providing for the termination of rights if the licensee “initiate[s] litigation by asserting a patent 
infringement claim.”  Mozilla Public License, supra note 48, § 8.2; Nokia Open Source 
License, supra note 48, § 8.2; Sun Public License, supra note 48, § 8.2; see also IBM Public 
License Version 1.0, § 7 (“If Recipient institutes patent litigation against a Contributor with 
respect to a patent applicable to software (including a cross-claim or counterclaim in a 
lawsuit), then any patent licenses granted by that Contributor to such Recipient under this 
Agreement shall terminate as of the date such litigation is filed.”), available at 
http://www.opensource.org/licenses/ibmpl.php (last visited Oct. 20, 2004); RealNetworks 
Public Source License, supra note 49, § 11.1(c) (providing for automatic termination if the 
licensee at any time “commence[s] an action for patent infringement against Licensor.”). 

54.    The OSD prohibits open source licenses from discriminating against persons, 
groups or fields of endeavor.  OSD, supra note 48, §§ 5, 6.  Many of the licenses referenced in 
footnotes 43, 48, 49, and 53 through 55 are certified by the Open Source Initiative to comply 
with this requirement.  See Open Source Initiative, The Approved Licenses, at 
http://www.opensource.org/licenses/index.php (last visited Oct. 20, 2004) (listing OSI 
certified licenses); Open Source Initiative, Certification Mark and Process, at 
http://www.opensource.org/docs/certification_mark.php#approval (last visited Oct. 20, 2004) 
(“The OSI Certified mark is OSI’s way of certifying that the license under which the software 
is distributed conforms to the OSD . . . .”). 

55.    The OSD does not require open source licenses to include express or implied 
warranties, and most, if not all, licenses contain standard “no warranty” provisions and 
liability disclaimers.  See OSD, supra note 48 (remaining silent on the issues of warranty and 
liability disclaimers); see also Apache License, supra note 43 (no warranty); GPL, supra note 
8, §§ 11, 12 (no warranty and liability disclaimer); IBM Public License, supra note 53, §§ 5, 6 
(same); Mozilla Public License, supra note 48, §§ 7, 9 (same); Nokia Open Source License, 
supra note 48, §§ 7, 9 (same); Perl Artistic License, supra note 49, § 9 (no warranty); 
RealNetworks Public Source License, supra note 49, §§ 8, 9 (no warranty and liability 
disclaimer); Sendmail License, supra note 43, § 6 (same); Sun Public License, supra note 48, 
§§ 7, 9 (same). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 79 

 

2.  Open Source Development Norms and Practices 

Open source software’s central goal, freely sharable and modifiable 
source code, is more than a legal mechanism implemented in a license.  It is 
a powerful community norm that guides and facilitates the efforts of most 
large open source software projects.56  Indeed, for open source projects based 
on attribution-only licenses, the combination of these norms and market 
appeal for the open source product suffices to ward off successful 
privatization of the software even though the attribution-only license itself 
does not prevent this.57 

For example, another critical internet component is a well-known open 
source product called Apache, which serves web pages over the internet.  
Apache uses an attribution-only license.58  Anyone could take the entire open 
source product and try to sell a proprietary version.  Among other reasons, 
this does not happen because the proprietary version would not benefit from 
the continuous improvements to Apache arising from users and contributing 
programmers constantly submitting fixes for software bugs and submitting 
coding changes for the product.  The proprietary version could not harness 
this effort arising from open source norms of sharing source code 
modifications.  Thus, open source norms, sometimes strongly supported by 
the license, sometimes weakly supported, promote a unique collaborative 
software development effort.59 

                                                                                                               
56.    Vetter, supra note 7, at 568 n.9, 604 n.112; see also Zittrain, supra note 6, at 

272-73 (comparing developmental differences between free and proprietary software). 
57.    Commandeering or privatizing an open source software project is a theoretical 

concern with a number of intriguing aspects, but in practice, it rarely occurs.  This is in part 
due to the reason discussed in the text – superior demand for the open source version of the 
software due both to the success of that version, and the reputation of the programming group 
responsible for its development.  Another prohibiting factor is that attribution-only licenses 
are not the dominant form of open source license. 

A related phenomenon is forking, where a group of programmers takes an open source 
software project in a different direction, effectively creating two competing (or 
complimentary) open source products where before there was only one.  Open source licenses 
allow forking, as long as the software continues to meet the conditions of the original license 
regime.  Forking, like privatization, is also rare, but the possibility of forking is thought to 
provide an important disciplining force on the ad hoc leadership group in charge of most open 
source products.  McGowan, Legal Implications, supra note 4, at 263-64. 

58.    Apache License, supra note 43. 
59.    The open source software collaborative development model is unique in 

comparison to traditional proprietary software development models.  See Vetter, supra note 7, 
 



80 RUTGERS LAW JOURNAL [Vol. 36:53] 

Most large open source software projects, including Apache and 
GNU/Linux, operate using this collaborative development model.  A core 
development group generates a substantial portion of the software.  Other 
non-core developers and users operate and debug the software.  The leaders 
of the project make design decisions and filter software submittals for 
inclusion in the product.  The users and non-core developers, because they 
can review the source code, are better able to determine whether software 
problems lie in their own applications or in the open source software itself.  
This efficiency, among others, supports the open source norm of freely 
sharing modifications. 

Specifically, the norm suggests to users and programmers that they share 
modifications with the core developers leading the open source project.  
Their confidence in doing this arises from at least two sources.  First, for 
products under open source licenses that guard against privatization (by 
using terms stronger than an attribution-only license), the license ensures that 
others will not exploit the contributed modifications for private gain.  
Second, users’ confidence in the open source process comes from the 
knowledge that even if someone attempted privatization, the original open 
source developers are better positioned than the privatized version to evolve 
the product to meet users’ needs, satisfy market demand, and thus lead the 
field in the application’s niche. 

To see how open source development practices interact with a typical 
open source license, consider how an open source project might proceed.  
Assume that the core developers each program components of the software 
that are not easily partitioned or separately useful and are designed to interact 
as an operable whole.  Putting aside the possibility of joint authorship,60 each 
                                                                                                               
at 626 & n.186 (noting that the means of collaboration among open source programmers are 
different in degree than programmers in traditional software development).  The degree to 
which open source software is unique is too substantial to fully describe here, other than to 
provide a few examples.  With the source code viewable by all, open source development is 
thought to have debugging efficiencies exceeding those of traditional software.  Open source 
developers are typically far-flung and they collaborate over the internet.  There is a lack of 
physical proximity among key developers in comparison to traditional software projects.  
Moreover, while having some partially-centralized decision-making apparatus, they lack the 
full command and control management apparatus used to control costs and track inputs and 
outcomes for proprietary development.  See id. at 567, 597, 610 n.133, 625-29 & n.186 
(comparing the traditional coordination of team developed software in the proprietary model 
with coordination of open source collaborative model). 

60.    By designating the programmers as co-contributors, I consciously sidestep the 
question whether the co-contributors are joint authors in the copyright sense, or whether the 
resulting product is a joint work.  See NIMMER, supra note 28, § 6.03 (discussing the elements 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 81 

 

author has licensed her software to the others, and to any users, under the 
open source license.  A web of license interdependency has begun. 

If the core group accepts significant modifications from 
users/contributors, the interdependency web expands.  Typically everyone 
eventually upgrades to the latest version containing the new modifications.  
As this process continues, it effectively locks the project into an open source 
development mode due to collective action constraints.  It is unlikely all 
users/contributors with copyrighted code in the project would agree to 
privatize the project.61  Even if most of the developers agreed to privatize, 
doing so would require an excision of the hold-out programmers’ code.  
Sometimes such an excision will be very difficult because the hold-out 
programmers’ code might be highly intertwined with the other programmers’ 
code.62  Thus, as an open source project grows, the license and development 
practices mutually reinforce the open source nature of the software. 

                                                                                                               
of joint authorship and the distinction between joint authors and a joint work).  Nimmer also 
contrasts joint authorship with its alternatives, derivative works and collective works: 

[I]n the case of both a derivative work, and a collective work, the contributing 
author owns only his own contribution, while in the case of a joint work each 
contributing author owns an undivided interest in the combination of contributions.  
What, then, distinguishes a derivative work from a joint work based upon 
inseparable parts?  What distinguishes a collective work from a joint work based 
upon interdependent parts?  The distinction lies in the intent of each contributing 
author at the time his contribution is written.  If his work is written “with the 
intention that [his] contribution . . . be merged into inseparable or interdependent 
parts of a unitary whole” then the merger of his contribution with that of others 
creates a joint work.  If such intention occurs only after the work has been written, 
then the merger results in a derivative or collective work. 

Id. § 6.05 (quoting 17 U.S.C. § 101 (2000)) (footnotes omitted). 
61.    Even if all contributing programmers privatized a project, this would only affect 

future versions of the software.  Existing and past versions made available under an open 
source license would still be in circulation among users, who could rely on the original license 
terms for their continued use. 

62.    Excising code from a large project, however, is a possible resuscitation method for 
GNU/Linux should SCO prevail in its suit against IBM.  See supra notes 17-18 and 
accompanying text for a description of the SCO suit. 

If SCO proved that IBM copied SCO’s source code into the Linux kernel, the open 
source community has stated that it would then rework the Linux kernel to remove the code.  
See Stephen Shankland, SCO:  Unix Code Copied into Linux (May 1, 2003), at  
http://news.com.com/2102-1016_3-999371.html (quoting Bruce Perens, a leader within the 
open source community, as stating that “a simpler solution” would be to allow the Linux 
community to replace the alleged infringing code).  While excising the code could create an 
infringement-free version for the future, SCO would have the existing GNU/Linux user base 
 



82 RUTGERS LAW JOURNAL [Vol. 36:53] 

The preceding discussion illustrates that the open source creed, freely 
sharable and modifiable source code, starts with a license that establishes 
baseline or foundation norms, and builds from that license through 
development practices that reinforce the foundation.  The open source license 
permissions that enable this foundation typically require availability of the 
source code, prohibit charging royalties, and require reapplication of at least 
some of the same terms to redistributed software.  In a multi-contributor 
open source project, these license terms eventually create an interdependent 
web of permissions.  The paradigmatic example of this reinforcing cycle is 
the General Public License and the open source software based on it.  A 
discussion of this example follows in the next section. 

B.  The General Public License (GPL) 

The General Public License, or GPL, is at the heart of the open source 
movement in many ways.  To many, it is synonymous with open source 
software.  Much of the academic commentary in a variety of disciplines 
focuses on the GPL as the paradigmatic open source license.  It is the first 
and most widely applied open source software license to go beyond an 
attribution-only license.63  The most important components of the 
GNU/Linux operating system are licensed under the GPL.  Besides the 
GPL-based Linux kernel, the critical software tools from the GNU open 
source project rely on the GPL.  This is because Richard Stallman, the author 
of the GPL, also leads the GNU project under the auspices of the Free 

                                                                                                               
in a vulnerable position.  Users would have to seriously consider paying licensing fees for the 
current version until they could upgrade to the resuscitated version, or face the possibility of 
paying copyright infringement damages to SCO for both past and future use. 

63.    See Steve H. Lee, Open Source Software Licensing 15-19 (1999) (discussing the 
role of Richard Stallman and the Free Software Foundation in the genesis of copyleft and the 
GPL, “the first example of an open source software license”), available at 
http://cyber.law.harvard.edu/openlaw/gpl.pdf (Apr. 28, 1999); Josh Lerner & Jean Tirole, The 
Scope of Open Source Licensing 23 (Dec. 2002) (noting “the dominant role of the General 
Public License” after a survey of the popular Sourceforge.net open source project repository 
revealed that approximately three-quarters of the projects used the GPL, as compared with 
approximately seven percent under the BSD), available at 
http://papers.nber.org/papers/w9363.pdf; The GNU Operating System - Free Software 
Foundation, Licenses, at http://www.gnu.org/licenses (last visited Oct. 28, 2004) (noting that 
the GNU GPL is used by over half of all Free Software projects). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 83 

 

Software Foundation (FSF).64  Mr. Stallman is a pioneer and visionary of the 
open source movement, which further raises the visibility of the GPL.  Thus, 
for a variety of reasons, the GPL is the benchmark for open source licenses.65 

The GPL implements the open source license conditions described 
above.  Its preamble explicitly recites what has become the general goal of 
the open source movement:  in contravention to proprietary software, the 
GPL “is intended to guarantee your freedom to share and change free 
software - to make sure the software is free for all its users.”66  It requires 

                                                                                                               
64.    See Free Software Foundation, at http://www.fsf.org/fsf/fsf.html (last visited Oct. 

28, 2004) (describing the foundation as “dedicated to promoting computer users’ right to use, 
study, copy, modify, and redistribute computer programs”); see also McGowan, SCO What?, 
supra note 3, at 35 (suggesting that the FSF owns any cognizable intellectual property rights, 
such as copyright or trademark, to the GPL itself). 

65.    Among the other reasons why the GPL is a standard-setter is that the GNU 
organization, the FSF, maintains a listing that critiques other open source licenses as 
compared to the GPL.  See GNU Operating System - Free Software Foundation, Various 
Licenses and Comments about Them, GNU Project - Free Software Foundation, at 
http://www.gnu.org/licenses/license-list.html (last visited Oct. 28, 2004) (listing, categorizing 
and discussing licenses based on whether they are compatible with the GPL).  Given the 
leadership position of the FSF, and its progenitor, Mr. Stallman, in the open source 
community, these critiques have significant effect on others in the community.  See id. 
(describing another open source license, the Mozilla Public License (MPL), as incompatible 
with the GPL and urging programmers not to use the MPL for that reason, but noting that a 
later version of the MPL allows the licensor the option to specify other license terms for part 
of the MPL’ed code, and if that other license is GPL-compatible, then combinations with that 
part of the program would be allowed); accord Mozilla Relicensing FAQ (noting that the FSF 
has asserted that the MPL is incompatible with the GPL), available at 
http://www.mozilla.org/MPL/relicensing-faq.html (last visited Oct. 28, 2004). 

66.    GPL, supra note 8, preamble. 
The GPL’s preamble also comments on two of the license terms earlier described as less 

central and relevant to my argument, but important generally to open source software:  
software warranty and patent issues.  See supra Part II.A.1. 

Also, for each author’s protection and ours, we want to make certain that 
everyone understands that there is no warranty for this free software.  If the software 
is modified by someone else and passed on, we want its recipients to know that what 
they have is not the original, so that any problems introduced by others will not 
reflect on the original authors’ reputations. 

Finally, any free program is threatened constantly by software patents.  We 
wish to avoid the danger that redistributors of a free program will individually 
obtain patent licenses, in effect making the program proprietary.  To prevent this, 
we have made it clear that any patent must be licensed for everyone’s free use or not 
licensed at all. 

GPL, supra note 8, preamble. 



84 RUTGERS LAW JOURNAL [Vol. 36:53] 

that source code be available,67 and that those redistributing the software in 
modified or unmodified form do so without charging royalties for use.68  
Users can run a GPL-based program without restriction.  The license is 
mostly concerned with copying, distribution, and modification of the 
software.69  The GPL provides that users retain their rights to copy, modify, 
and distribute the software, even if the parties from whom they obtained the 
software violate the GPL and lose their rights.70 

The GPL specifies a strong scope for the reapplication provision, 
requiring redistribution under the GPL’s terms.71  In addition, it further 
specifies that redistributors may not add to the GPL’s conditions.72 

Each time you redistribute the Program (or any work based on the 
Program), the recipient automatically receives a license from the original 
licensor to copy, distribute or modify the Program subject to these terms 
and conditions.  You may not impose any further restrictions on the 
recipients’ exercise of the rights granted herein.73 

The GPL specifically acknowledges that its licensing power derives from 
copyright in the software.74  The copyright protection attaches to subsequent 
copies of the software, providing the aggregate group75 of contributing 

                                                                                                               
67.    GPL, supra note 8, at §§ 1, 3. 
68.    Id. §§ 2(b), 11. 
69.    Id. § 0. 
70.    Id. § 4. 
71.    The GPL implements a strong scope for the reapplication provision in two places.  

For redistribution of verbatim copies, section 1 applies.  Id. § 1.  It requires that such a 
redistributor “conspicuously and appropriately publish on each copy an appropriate copyright 
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to 
the absence of any warranty; and give any other recipients of the Program a copy of this 
License along with the Program.”  Id.  For non-verbatim copies, the redistributor “must cause 
any work that you distribute or publish, that in whole or in part contains or is derived from the 
Program or any part thereof, to be licensed as a whole at no charge to all third parties under 
the terms of this License.”  Id. § 2(b). 

72.    Id. § 6. 
73.    Id. (emphasis added). 
74.    Id. preamble, § 5. 
75.    It is important to emphasize that this aggregate contributing group usually grows 

over time in a large open source software project.  Users become contributing programmers 
when they submit bug fixes.  New programmers join the project, or junior programmers cycle 
through the project.  Assuming that the project does not require copyright assignments to 
some centralized authority, each new contributor expands the web of permissions that underlie 
and authorize open source promulgation of the software.  See supra Part II.A.2. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 85 

 

programmer-authors76 with the power to exclude uses that do not comply 
with the GPL’s conditions.  In this sense, and because it is based on 
copyright, the GPL “run[s] with the code.”77  Accordingly, it does not 
necessarily need to rely on contract to hold licensees to the conditions 
underlying the permission.  Typically, there is no formal act of assent to the 
GPL’s terms, and the GPL does not contemplate such an act.78  In this 
scenario, those who redistribute GPL-based software typically do not  
 

                                                                                                               
76.    Concerning the programming group’s power to exclude others’ use, as before, I put 

aside issues of joint authorship.  These issues, however, might have dramatic effects.  If the 
open source software were adjudged a joint work, then “the conclusion of joint authorship 
follows, meaning that both parties were free to exploit the entire product.”  NIMMER, supra 
note 28, § 6.05, at 6-15.  Thus, at least under copyright, a sole joint programmer-author might 
be able to license the entire open source software project to others on different terms.  
Arguments that there was an agreement, or estoppel, or other theories of equity might 
constrain a rogue joint author, but with potentially much less effectiveness than the open 
source license’s imposition of the interdependency web.  The web constrains the 
programmer-authors and their users because each has authored only a component that requires 
the rest for full operation.  McGowan, Legal Aspects, supra note 7, at 13-14. 

77.    McGowan, Legal Implications, supra note 4, at 245. 
78.    Absent a formal act of assent, the GPL raises enforceability questions similar to 

those surrounding shrinkwrap licenses.  See Patrick K. Bobko, Linux and General Public 
Licenses: Can Copyright Keep “Open Source” Software Free?, 28 AM. INTELL. PROP. L. 
ASS’N Q.J. 81, 100-03 (2000); Steve H. Lee, Open Source Software Licensing 72-79 (Apr. 28, 
1999) (pre-publication version), available at http://cyber.law.harvard.edu/openlaw/gpl.pdf 
(last visited Dec. 20, 2003); McGowan, Legal Implications, supra note 4, at 289-96. 

Beyond shrinkwrap licenses, their cousin, clickwrap licenses, with the benefit of the 
user’s positive indication of assent to the terms, are another possible comparison point for 
open source licenses.  However, open source software is not as inclined as proprietary 
software or web sites to present users an opportunity to affirm terms of the license.  See OSD, 
supra note 48, § 10 (requiring that “[n]o provision of the license may be predicated on any 
individual technology or style of interface” because section ten “is aimed specifically at 
licenses which require an explicit gesture of assent in order to establish a contract between 
licensor and licensee.  Provisions mandating so-called ‘click-wrap’ may conflict with 
important methods of software distribution . . . such provisions may also hinder code re-use.”).  
The current version of the GPL was written in 1991, before clickwrap practices were 
prominently used.  As a result, the GPL relies on the more traditional, shrinkwrap style 
“notice-plus-conduct model.”  McGowan, Legal Implications, supra note 4, at 289.  For a 
more expansive discussion of shrinkwrap and clickwrap agreements and their implications for 
the digital era, see Michael J. Madison, Legal-Ware: Contract and Copyright in the Digital 
Age, 67 FORDHAM L. REV. 1025, 1031-43, 1055-76 (1998). 



86 RUTGERS LAW JOURNAL [Vol. 36:53] 

explicitly agree, in a contract sense, to reapply the same provisions.79  
Perhaps to compensate for this, the quoted language above expresses an 
imputed intent:  all original and subsequent licensors who contributed to the 
software also grant a license to all possible end users who might receive the 
software via potentially innumerable redistributors. 

The other implication of redistributors not expressly agreeing to the GPL 
is that this may raise factual questions about whether they intended the GPL 
to apply to software they distributed along with, or coupled to, the original 
GPL-based software.  An example in this vein is the SCO case.  Recall that 
the essence of SCO’s suit against IBM is that IBM had improperly injected 
SCO’s code into certain versions of GNU/Linux.  Besides suing IBM, SCO 
began soliciting license fees from end users of GNU/Linux.80  To allege that 
such users needed to pay license fees, SCO, in essence, had to allege that 
distributors, such as Red Hat, were distributing infringing copies of SCO’s 
code.  In response, Red Hat filed a declaratory judgment action.81  One of the 
allegations in Red Hat’s complaint is that SCO itself distributed GNU/Linux, 
and thus should comply with the license.82  This would prohibit SCO from 
henceforth soliciting license fees from users.83  A number of factual findings 
will ultimately determine the effectiveness of this argument.84  Whatever the 

                                                                                                               
79.    GPL, supra note 8, § 5 (“You are not required to accept this License, since you 

have not signed it.”). 
80.    See supra note 18 and accompanying text. 
81.    In counts one and two of the complaint, Red Hat requested a declaratory judgment 

with respect to SCO’s copyright and trade secret assertions.  Complaint filed by Red Hat, Inc. 
at 19-20, ¶¶ 70-77, Red Hat, Inc. v. SCO Group, Inc., (D. Del. 2003) (No. 03-772) [hereinafter 
Red Hat Complaint], available at http://lwn.net/images/ns/rh-complaint.pdf (last visited Dec. 
20, 2004).  Red Hat also brought claims against SCO based on the “unfair, untrue, and 
deceptive campaign” being waged by SCO in order “to create an atmosphere of fear, 
uncertainty and doubt about LINUX.”  Id. at 1, ¶ 1.  Red Hat’s claims included false 
advertising and deceptive trade practices under the Lanham Act, and common law unfair 
competition, tortious interference with prospective business opportunities, and trade libel and 
disparagement claims.  Id. at 20-23, ¶¶ 87-105. 

82.     Id. at 1-2, ¶ 2. 
83.    Id. at 19, ¶¶ 72-73. 
84.    The factual findings underlying whether SCO’s distribution of GNU/Linux is a 

defense for users, and the basis for a declaratory judgment for Red Hat include, assuming that 
SCO’s original allegation against IBM is true, whether SCO knew that its code was included 
(if it was) in the GNU/Linux distribution(s) that passed through SCO.  As of October, 2004, 
developments in the case include the court’s denial of SCO’s motion to dismiss and the court 
ordering the case stayed pending the resolution of the SCO versus IBM case in Utah.  Red 
Hat, Inc. v. SCO Group, Inc., No. 03-772-SLR, at 1, 5 (D. Del. Apr. 6, 2004) (order denying 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 87 

 

legal weight of these findings, they might have been strengthened by SCO’s 
affirmative act of assent to be bound by the GPL. 

Like other open source licenses, the GPL has additional provisions less 
central and relevant to my argument.  These include provisions attempting to 
deal with the threat of software patents85 provisions dealing with the lack of 
warranties and indemnification, and disclaimers of liability.86 

As the pioneer license and most popular standard-setter, the GPL has 
widely influenced the open source software community.87  Its basic thesis, 
source code availability for freely sharable and modifiable software, has been 
implemented in many other licenses.  The power of this thesis rests in the 
software development efficiencies it creates for collaborative open source 
projects.  The aggregate effect of this power enables Tux, the little Linux 
penguin, to viably compete with Microsoft in niche, but important, 
application markets.  Despite its overall importance and influence, the 
“infectious” license terms of the GPL are less often imitated compared to its 
other core provisions.88  While less imitated, they are oft discussed and create 

                                                                                                               
SCO’s motion to dismiss and order staying case but indicating that if the Utah litigation is 
“not progressing in an orderly and efficient fashion, the court may reconsider the stay”), 
available at http://sco.tuxrocks.com/Docs/RH/RH-34.pdf (last visited Dec. 20, 2004).  The 
court also ordered parties to submit updates of the Utah litigation involving IBM by letter 
every ninety days.  Id. at 5.  Red Hat filed a motion for the court to reconsider its order to stay 
the case but the court has yet to rule on the motion.  Motion for Reconsideration, Red Hat (No. 
03-772-SLR), available at http://sco.tuxrocks.com/Docs/RH/RH-35.pdf (last visited Dec. 20, 
2004). 

85.    GPL, supra note 8, §§ 7-8.  Section 7 admonishes the user not to redistribute the 
software if doing so contravenes the GPL’s terms due to a court order or intellectual property 
infringement concerns.  Id. § 7 (“For example, if a patent license would not permit 
royalty-free redistribution of the Program by all those who receive copies directly or indirectly 
through you, then the only way you could satisfy both it and this License would be to refrain 
entirely from distribution of the Program.”).   

86.    Id. §§ 11-12.  Section 11 provides an “as is,” “as provided” disclaimer of warranty.  
Id. § 11.  Section 12 disclaims liability.  Id. § 12.  The GPL provides no indemnification; no 
provisions of the license speak to indemnification. 

87.    It seems likely that programmers choose the GPL because it is the first and most 
well-known license.  The GPL also probably lures adopters because it is the license employed 
by GNU/Linux, the flagship open source software product.  See McGowan, SCO What?, 
supra note 3, at 33-34 (suggesting that the GPL is employed in a trademark sense). 

88.    Devon Bush, Analysis of Prevalent Open-Source Licenses, at 
http://cyber.law.harvard.edu/home/ossummary (last visited Dec. 20, 2004) (comparing seven 
of the most widely used open source licenses, and noting that the GPL “provides one of the 
strongest copylefts available” and is therefore “extremely viral”). 



88 RUTGERS LAW JOURNAL [Vol. 36:53] 

another lightning rod for controversy in the debate about open source 
software development and its mode of legal protection.  In the next section, I 
turn to the GPL’s “infectious” terms to describe the provisions involved and 
the issues they engender. 

C.  The GPL’s Infectious License Terms 

The GPL speaks in several places about its scope of coverage for other 
software.  It accounts for a number of situations where one redistributes 
something other than, or more than, a verbatim copy of some or all of the 
originally-received open source software.  Most of the relevant provisions, 
however, are in section 2 of the GPL.89  This provision contemplates two 

                                                                                                               
89.    Given the importance of the GPL’s section 2, it is set out below. 

2. You may modify your copy or copies of the Program or any portion of it, 
thus forming a work based on the Program, and copy and distribute such 
modifications or work under the terms of Section 1 above, provided that you also 
meet all of these conditions: 

a) You must cause the modified files to carry prominent notices stating that you 
changed the files and the date of any change. 

b) You must cause any work that you distribute or publish, that in whole or in 
part contains or is derived from the Program or any part thereof, to be licensed as a 
whole at no charge to all third parties under the terms of this License. 

c) [requires a certain notice mechanism under certain conditions] 
These requirements apply to the modified work as a whole.  If identifiable 

sections of that work are not derived from the Program, and can be reasonably 
considered independent and separate works in themselves, then this License, and its 
terms, do not apply to those sections when you distribute them as separate works.  
But when you distribute the same sections as part of a whole which is a work based 
on the Program, the distribution of the whole must be on the terms of this License, 
whose permissions for other licensees extend to the entire whole, and thus to each 
and every part regardless of who wrote it. [hereinafter § 2, ¶1] 

Thus, it is not the intent of this section to claim rights or contest your rights to 
work written entirely by you; rather, the intent is to exercise the right to control the 
distribution of derivative or collective works based on the Program.  [hereinafter 
§ 2, ¶2] 

In addition, mere aggregation of another work not based on the Program with 
the Program (or with a work based on the Program) on a volume of a storage or 
distribution medium does not bring the other work under the scope of this License.  
[hereinafter § 2, ¶ 3] 

GPL, supra note 8, § 2. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 89 

 

outcomes for the licensing status of this “other”90 software:  it is, or is not, 
required to be distributed under the GPL’s terms when distributed along with 
the original software. 

While GPL section 2 is clear that it envisions two possible outcomes, 
what is less clear is the path to either outcome.  In the analysis below, this 
Article evaluates the section 2 labyrinth.91  First, I parse and extract the 
relevant provisions.  Next, I categorize them to isolate the areas of certainty 
and uncertainty.  Each is discussed in turn.  In all categories, the ultimate 
questions are:  (i) what does the license mean when it says “other” software; 
and (ii) how does the GPL treat this “other” software. 

At a length running a little over 400 words, consuming most of a page, 
section 2 contains the GPL’s infectious terms.92  It covers several situations 
that may arise when open source software is modified, intermixed or coupled 
with other software and redistributed.93  Besides the introductory preamble 
paragraph, it has three labeled provisions, subsections (a) through (c), and 
three unlabeled paragraphs, which I refer to as paragraphs 1 through 3.94  
Some of these items are not related to my argument:  subsection 2(a) requires 
notice within the source code when one modifies it;95 and section 2(c) 
requires, in a certain technical scenario, notice related to copyright, warranty, 
and the applicability of the GPL.96  Overall, however, even for the relevant 
                                                                                                               

90.    It is my own construction to use the word “other” in this way:  “other” indicates 
software that is not the originally-received open source software.  However, GPL section 2 
uses the word in a similar construction, reciting the “other work” (and “another work”) when 
referring to other software.  Id. § 2(b), ¶ 3. 

91.    See Peter S. Menell, Envisioning Copyright Law’s Digital Future, 46 N.Y.L. SCH. 
L. REV. 63, 181 (2002) (describing the GPL as a “a complex licensing agreement designed to 
prevent programmers building proprietary limitations into ‘free’ software”). 

92.    GPL, supra note 8, § 2. 
93.    Id. 
94.    See generally id. 
95.    Id. § 2(a) (“You must cause the modified files to carry prominent notices stating 

that you changed the files and the date of any change.”). 
96.    Subsection 2(c) is as follows. 

If the modified program normally reads commands interactively when run, you 
must cause it, when started running for such interactive use in the most ordinary 
way, to print or display an announcement including an appropriate copyright notice 
and a notice that there is no warranty (or else, saying that you provide a warranty) 
and that users may redistribute the program under these conditions, and telling the 
user how to view a copy of this License.  (Exception: if the Program itself is 
interactive but does not normally print such an announcement, your work based on 
the Program is not required to print an announcement.) 

 



90 RUTGERS LAW JOURNAL [Vol. 36:53] 

provisions, GPL section 2 is as significant for what it does not say as for 
what it does. 

The GPL’s infectious terms are distributed among subsection 2(b) and 
paragraphs 1 and 3.  Subsection 2(b) requires that redistributors “must cause 
any work that you distribute or publish, that in whole or in part contains or is 
derived from the Program or any part thereof, to be licensed as a whole at no 
charge.”97 

Paragraph 1 elaborates on subsection 2(b), and perhaps extends it, while 
paragraph 3 provides a counter-example in which there is no infection. 

From the copyright perspective, subsection 2(b) suggests a permission to 
violate the reproduction right, distribution right, and the derivative work 
right in the originally-received open source software.98  By distributing or 
publishing a work that “contains” some or all of the original code, one would 
violate the reproduction right.  Putting aside questions related to copyright’s 
first sale doctrine99 as applied to digital copies and the ownership thereof,100 
such activity would also violate the distribution right.  Subsection 2(b) also 
subjects “derived” works to the GPL, implicating copyright’s derivative 
work right. 

The operative infectious language in subsection 2(b) is the middle 
clause, set off by commas:  “that in whole or in part contains or is derived 
from the Program or any part thereof.”101  In combination with section 2’s 
preamble and the rest of subsection 2(b), this language says that if I take 
some or all of the originally received software and distribute or publish it 
verbatim, or in modified or derived form, then I must do so under the GPL’s 
terms, including licensing the distribution “as a whole at no charge.” 

                                                                                                               
Id. § 2(c). 

97.    Id. § 2(b). 
98.    See id. 
99.    17 U.S.C. § 109(a) (2000) (“Notwithstanding the provisions of section 106(3) [the 

distribution right], the owner of a particular copy . . . lawfully made under this title, or any 
person authorized by such owner, is entitled, without the authority of the copyright owner, to 
sell or otherwise dispose of the possession of that copy.”); see R. Anthony Reese, The First 
Sale Doctrine in the Era of Digital Networks, 44 B.C. L. REV. 577, 579-80 (2003) (suggesting 
that new digital technology threatens to undermine copyright’s first sale doctrine). 

100.    See Liu, supra note 45, at 1266, 1274-78 (arguing that ownership of digital works 
should functionally provide similar incidents of ownership as physical copies of a copyrighted 
work provide, and arguing that the first sale doctrine for digital copies is greatly limited if not 
eliminated). 

101.    GPL, supra note 8, § 2(b). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 91 

 

In the middle clause, the word “whole” is of particular interest.  First, the 
same word appears near the beginning of subsection 2(b), but is used there in 
a different context than in the last clause.  The earlier appearance is 
adjectival, describing one aspect of the originally received software (all of it) 
the use of which would require the license permissions specified.  The 
subsequent appearance of “a whole” seems to identify the software the 
redistributor distributes.  Whatever “a whole” includes is what the GPL’s 
infectious terms cover. 

Thus, “a whole” could be a literal copy of the originally received 
software.  But, “a whole” could also be a slightly modified copy of the 
original source code.  Further, “a whole” could be a highly modified copy of 
the original source code, in which the modifications include significant 
portions of other source code.  The sequence could continue, defining 
increasingly expansive notions of “a whole” resulting from combination with 
“other” software.  Thus, in part, the reach of the GPL’s infectious terms 
depend on what is meant by “a whole.”  This conclusion, however, is not 
apparent from subsection 2(b).  The reader must consider subsection 2(b) in 
the context of paragraph 1. 

Subsection 2(b) introduces the concept of “a whole,” but paragraph 1 
significantly elaborates on it, as set forth below. 

These requirements apply to the modified work as a whole.  If 
identifiable sections of that work are not derived from the Program, and can 
be reasonably considered independent and separate works in themselves, 
then this License, and its terms, do not apply to those sections when you 
distribute them as separate works.  But when you distribute the same 
sections as part of a whole which is a work based on the Program, the 
distribution of the whole must be on the terms of this License, whose 
permissions for other licensees extend to the entire whole, and thus to each 
and every part regardless of who wrote it.102 

This elaboration is the heart of the GPL’s infectious terms.  Given its 
importance, I further reference each of its components as sentences 1 through 
3.   

Sentence 1 notes that the requirements of section 2 apply to the new 
“whole.”103  I find in sentence 2 a three-part test, the identifiably independent 

                                                                                                               
102.    Id. § 2, ¶ 1 (emphasis added). 
103.    Id. 



92 RUTGERS LAW JOURNAL [Vol. 36:53] 

and separate works test, which I discuss below.104  If the test is met, the other 
software is not part of the “whole” – and perhaps this adds some additional 
contour to the reach of the infectious terms.  Sentence 3 elaborates on 
subsection 2(b)’s prescription that the “whole” reaches “the entire whole, and 
thus to each and every part regardless of who wrote it.”105 

This review of GPL section 2 shows that it takes an expansive approach 
to the issue of its coverage for other software.  In this, “other software” could 
mean, on the one hand, minor modifications added to an existing open source 
program, which the GPL would capture.  Or, on the other hand, completely 
separate software (possibly previously licensed as proprietary software) 
intermixed or coupled with the open source software. 

The GPL has an expansive approach because section 2 stops somewhere 
just short of extending its terms to other software merely aggregated with the 
open source program.  It draws this fuzzy boundary using the rubric of the 
“whole” – a label for a standard that is not expressly identified, but which 
may take its gist from the reproduction right or derivative work right in 
copyright.106  As the GPL acknowledges, it needs this rubric to “control the 
distribution of derivative or collective works based on the Program.”107  In 
the GPL’s view, whatever falls into the “whole” should be further licensed, 
when distributed as a part of the “whole,” under the royalty-free, open source 
approach. 

The problem GPL section 2 addresses is the allocation of rights or 
permissions for follow-on software works or for integrating disparate 
software to achieve a functional result for end users.108  While this problem is 
not unique to open source software licenses, it is uniquely unwieldy in such 
software.109  Follow-on developers need not have any connection to the 

                                                                                                               
104.    See infra Part III.A (discussing the identifiably independent and separate works 

test of GPL section 2, paragraph 2). 
105.    GPL, supra note 8, § 2, ¶ 1. 
106.    In addition, the gist of the outer boundary of the “whole” may come in part from 

specific implementations of the GPL, from parole documents that inform its meaning, and 
from practices in the open source community.  See infra Part IV. 

107.    GPL, supra note 8, § 2, ¶ 2. 
108.    See Mark A. Lemley, The Economics of Improvement in Intellectual Property 

Law, 75 TEX. L. REV. 989, 991 (1997) (discussing the changes in the “law of improvements,” 
and noting that “[a] number of doctrines in modern copyright and patent law attempt to strike 
some balance between the rights of original developers and the rights of subsequent 
improvers”). 

109.    In the license contracts often employed in proprietary software development 
projects, vendors and customers employ a number of approaches to allocate follow-on rights.  
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 93 

 

original developers.  And there is often no contractual relationship of the 
kind used in proprietary software development contracts to allocate or assign 
rights for follow-on development or integrated systems.110  Often, follow-on 
open source developers entangle themselves with the prior development 
group.  The allocation of rights, however, is an uncontested or moot point 
because the developer contributes the code to the project under an open 
source license. 

Thus, in the context of an open source license’s conditional permission 
to use, modify, and redistribute the software, infectious terms are most 
troubling when the open source software is intermixed or coupled with 
non-open-source software.111  In these cases, the allocation of rights and 

                                                                                                               
The rights may be allocated in advance to one party or the other.  Another approach is to 
include in the contract procedures by which rights to improvements to preexisting software are 
awarded to one party or the other.  Sometimes the contracted-for software development is an 
improvement to either the software vendor or customer’s existing software, or improvements 
to both resulting in the integration of each with the other.  Sometimes the specific 
improvements cannot be described in advance.  Thus, a contract might designate a board or 
other group to determine on an improvement-by-improvement basis who takes the rights.  In 
addition, joint ownership is an option.  Finally, besides assignment of the rights, permissions 
or licenses for use within the scope of the project (or for other defined fields of use) may 
round out the allocations.  See generally 1 ROGER M. MILGRIM, MILGRIM ON LICENSING 5A-
28, 29 (1995) (discussing the desirability of using contractual provisions to better define the 
extent of rights to modifications given the “yet undefined scope of the ‘derivative work’ 
concept”). 

110.    There are exceptions to the estimation that most open source projects do not 
explicitly assign rights.  Some open source projects request that contributors sign form 
agreements assigning or licensing copyright rights and privileges to an umbrella organization 
coordinating the project.  See, e.g., GNU Enterprise, Copyright Assignment, at 
http://www.gnu.org/software/gnue/community/copyleft.html (last visited Dec. 20, 2004) 
(requesting all developers contributing to “GNUe” code assign their copyright to the Free 
Software Foundation (FSF)); OpenOffice.org Open Source Project, Joint Copyright 
Assignment by Contributor to Sun Microsystems, Inc. (“Sun”), at 
http://www.openoffice.org/licenses/jca.pdf (last visited Dec. 20, 2004) (displaying the joint 
copyright assignment form all contributors to Sun’s “OpenOffice.org” project are required to 
sign); see also McGowan, Legal Aspects, supra note 7, at 14-16 (discussing the possible 
implications of assigning copyright to organizations willing to police and enforce license 
terms, such as the FSF). 

111.    A variation of the issue is when the open source software is intermixed or coupled 
with other open source software that employs a non-GPL-compatible license.  The Free 
Software Foundation provides guidance listing licenses that it concludes are not 
GPL-compatible.  GNU Operating System – Free Software Foundation, Various Licenses and 
Comments about Them, at http://www.fsf.org/licenses/license-list.html (last visited Dec. 20, 
2004). 



94 RUTGERS LAW JOURNAL [Vol. 36:53] 

privileges is not moot.  One who intermixes or couples open source software 
with her proprietary software risks a copyright infringement suit for violation 
of the reproduction and derivative work rights in the open source software.112  
This is the fundamental underlying mechanism of open source licensing, and 
indeed, software licensing in general. 

The next part reviews various scenarios when other software falls under 
the GPL’s rubric of the “whole.”  These scenarios are technical.  I describe 
some of the common ways in which software is intermixed, combined, 
integrated, and coupled.  In describing each scenario, the point is to relate the 
technical description to the GPL’s rubric of the “whole.”  This is to analyze 
the effects of that rubric and to explore how infectious licensing terms might 
work.  The GPL section 2 terms are my focus as a foil to explore more 
broadly the implications of the infectious approach. 

The analysis in latter parts views the infectious approach skeptically.  
The next part illustrates the technical aspects of the approach.  Even in light 
of the purported benefits that infectious terms support open source 
community development, prevent privatization, or convert proprietary 
software to open source, countervailing considerations arise from the 
technical scenarios that must be measured against the rights of copyright and 
the language of broad infectious terms.  The variety of methods available to 
intermix and couple software creates legal uncertainty with attendant costs.  
Moreover, that same uncertainty has inhibiting effects for interoperability. 

III.  THE TECHNOLOGICAL FRAMEWORK FOR INFECTIOUS AMBIT 

The previous part introduced open source software’s licensing approach 
and development model.  It also dissected GPL section 2’s infectious terms 
into components.  In the language of section 2, this is primarily an exercise 
in divining what “the whole” might mean in different situations.  These 
situations exist in a technological continuum, in a framework that this part 
describes.  In the forthcoming sections I do not yet analyze the framework 
                                                                                                               

112.    Intermixing and distributing open source and proprietary software also raises 
infringement risk for the distribution right.  However, in this context (and in most other 
contexts), violation of the distribution right follows from the violation of the reproduction 
right.  See NIMMER, supra note 28, § 8.02[A], at 8-27 (noting “it is the act of copying that is 
essential to, and constitutes the very essence of all copyright infringement,” including the 
distribution right).  While a violation of the distribution right is also often a violation of the 
reproduction right, it does not necessarily follow that a violation of the reproduction right is 
also a violation of the distribution right.  Id. § 8.02[C], at 8-30 (noting that “a printer who 
reproduces copies without then selling [or distributing] them is nonetheless an infringer”). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 95 

 

scenarios against the legal basis underlying the GPL:  copyright’s 
reproduction right and derivative work right.  Instead, that analysis comes in 
subsequent parts.  Rather, the following analysis introduces some of the 
factual and technological scenarios that may fall into increasingly broad 
degrees of scope for the infectious terms. 

A.  Noninfectious Scenarios for Aggregated Software 

GPL section 2 provides two linguistic formulations that delineate with 
some clarity, in terms of traditionally understood legal and technological 
concepts, when a redistributed work will not be “part of a whole” to which 
the GPL’s terms aspire.113  One formulation is paragraph 3, discussing mere 
aggregation.114  The other is sentence 2 of paragraph 1, discussing 
identifiably independent and separate works.115  In addition, paragraph 2 
provides a general expression of intended goals for the infectious GPL 
terms.116 

With regard to paragraph 3, mere aggregation for distribution purposes 
does not invoke the GPL’s infectious terms.  “[M]ere aggregation of another 
work not based on the Program with the Program (or with a work based on 
the Program) on a volume of a storage or distribution medium does not bring 
the other work under the scope of this License.”117  Testing this formulation 
in stages, a distributor who licenses or sells proprietary software and includes 
in the distribution media an installation kit118 for an open source software 

                                                                                                               
113.    GPL, supra note 8, § 2. 
114.    Id. § 2, ¶ 3. 
115.    Id. § 2, ¶ 1. 
116.    Id. § 2, ¶ 2. 
117.    Id. § 2, ¶ 3. 
118.    I use the term installation kit to encompass a variety of technologies used to 

distribute the many files that comprise most software.  For example, most installation kits 
include only a few files, with one special file that a user executes, or is automatically executed 
on certain events, such as inserting a CD into a computer.  When the special “startup” file is 
executed, it extracts files from the other files, which are only containers holding the actual 
files that make up the software.  Both source code and object code files could be extracted and 
installed.  The installation kit’s special startup file also will typically configure settings and 
parameters in the operating system of the target computer so that it recognizes the installed 
software and can run it.  From the perspective of GPL section 2’s terms, the significance in 
my example of the open source software being bound up in its own installation kit was to 
emphasize its separateness, which underscores that the overall distribution is only an 
aggregation. 



96 RUTGERS LAW JOURNAL [Vol. 36:53] 

product unrelated to the proprietary software is surely within the 
mere aggregation safe harbor.119 

Does this conclusion change if the included installation kit is for 
software that will somehow interoperate or work with the proprietary 
software?  Perhaps, but it depends on how.  Currently there is no answer in 
the GPL, and only opinions in practice.  The question is:  where does “mere 
aggregation” stop and being “part of a [redistributed] whole” begin?  This 
question frames the fundamental uncertainty clouding the GPL’s infectious 
terms.  However, the mere aggregation safe harbor immunizes a wide 
number of technical scenarios.  It allows for flexibility in distribution media, 
and allays fears that merely installing GPL-based software on one’s 
computer will invoke the infectious terms.  Proprietary software does not 
become open source software just because one stores it on the same 
hard drive or CD-ROM as some GPL-licensed open source software. 

There is a second, perhaps redundant, safe harbor in GPL section 2, the 
“identifiably independent and separate works” provision of paragraph 1, 
sentence 2.120  This provision may be thought to give content to what is a 
“mere aggregation.”  It would seem that a separate work meeting the 
strictures of sentence 2 might also be a mere aggregation.  Regardless, it 
provides a three-part test for when an identifiable section is not “a part of the 
whole”:  (i) the section is not derived from the originally-received open 
source software; (ii) it can be reasonably considered an independent and 
separate work; and (iii) it is distributed as a separate work.121  The test 
intones both objective and subjective perspectives.  Perhaps the objective 
aspect, whether one could reasonably consider a work independent and 
separate, justifies resorting to commercial practice to determine when 
“other” software is “part of a whole.”122  As the discussion in Part IV below 

                                                                                                               
119.    My assertion that the proprietary software distributor is in the “mere aggregation” 

safe harbor assumes that the vendor has otherwise complied with the open source license 
terms.  Thus, among other obligations, the open source installation kit should include source 
code files (or otherwise arrange for source code availability) and the distributor must not 
charge royalties for use.  In addition, the co-distributed open source product must be licensed 
under the open source license, not the license that applies to the proprietary software. 

120.    GPL, supra note 8, § 2, ¶ 1; see supra note 104 and accompanying text. 
121.    GPL, supra note 8, § 2, ¶ 1. 
122.    When the terms of a contract are ambiguous, the majority of jurisdictions allow 

extrinsic evidence, including evidence of trade usage, to aid in interpretation.  5 ARTHUR L. 
CORBIN, CORBIN ON CONTRACTS § 24.10 (rev. ed. 1998); see also U.C.C. § 2-202 (2002) 
(allowing evidence of trade usage, course of performance and course of dealing with or 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 97 

 

explains, the GPL’s broad provisions are sometimes implemented in practice 
to cover only particular technological methods for intermixing and coupling 
software. 

Thus, the GPL provides two safe harbors, the mere aggregation 
provision, and the identifiably independent and separate work provision.  
Intermixed or commingled proprietary software must fall within one of these 
two in order to escape the infectious rubric of the “whole.”  In comparing the 
two safe harbors, the GPL’s language specifies the mere aggregation safe 
harbor with a greater degree of specificity.  Both, however, are intended by 
the license to remove other software from the “whole.” 

In the next section, I look at the other end of the spectrum.  These are 
situations where the other software is highly likely to be a part of the 
“whole,” meaning that the infectious license requires that the other software 
employ open source terms. 

B.  Modifications and/or Extensions to Source Code 

While sentence 2 of paragraph 1 introduces a concept of identifiably 
independent and separate software sections, sentence 3 turns the concept 
around:  if these “same sections” are distributed “as part of a whole which is 
a work based on the Program,” the GPL’s terms must apply to all such 
included separate sections, regardless of their authorship and previous 
licensing scheme.123  In combination with section 2(b), this further specifies 
that the GPL’s terms apply when “other” software is deemed to be “part of a 
[redistributed] whole.”124 

As with mere aggregation on one end of a continuum, certain ways of 
modifying or extending software will classify at the other end if the resulting 
work is based on the originally-received open source software, and is thus 
part of “a whole” when redistributed.  In the language of copyright, these 
modifications or extensions are clearly or presumptively violations of the 
reproduction right or derivative work right, or both.  In the rest of this 
subsection and the subsections below, I will discuss examples falling along 
this continuum. 

To continue the discussion, I must introduce a few technological aspects 
of software.  It has a source code form and, typically, an object code form, 

                                                                                                               
without a showing of ambiguity); RESTATEMENT (SECOND) OF CONTRACTS § 202(1) (1981) 
(providing that all contracts should be “interpreted in the light of all the circumstances”). 

123.    GPL, supra note 8, § 2, ¶ 1. 
124.    Id. 



98 RUTGERS LAW JOURNAL [Vol. 36:53] 

sometimes called “binary” form.  Putting aside innumerable technical 
distinctions, programmers can understand, interpret, and manipulate the 
source code form, and use that form to write software.125  The source code is 
written in a computer language, which somewhat resembles traditional 
human written languages, but has numerous unique “words” (language 
statements) for a variety of functions related to manipulating data, interacting 
with and commanding the computer, interacting with other software, 
controlling the flow and progression of the program, and performing other 
tasks in the computing environment.126 

When a programmer completes her source code, she then processes or 
compiles it into object code form, which a computer can read and run.127  
The computer is able to read and run the object code because the computer 
has a special program called the operating system, which runs (or 
“executes”) other programs and enables those programs to interact with the 
hardware.128 

Since a computer program has a language that resembles a written 
human language, from a copyright perspective, software has drifted into 
classification as a literary work.  Thus, similar to the way one might be liable 
for copyright infringement of the reproduction right if one copied this Article 
and rewrote half of it by minor paraphrasing, and left the rest verbatim, one 
might be liable for copyright infringement by copying the source code of a 

                                                                                                               
125.    Vetter, supra note 7, at 582-83 (noting that programmers can understand, interpret 

and manipulate source code more productively than object code). 
126.    Id. at 578-86 (noting the various functions of the source code and demonstrating 

these functions through a metaphor comparing software instructions to the instructions in a 
cooking recipe). 

127.    Id. at 584.  The copyright act’s definition of a “computer program” reflects the 
technological distinction between source code and object code by recognizing that the 
program can command the computer to do work either indirectly, via the source code, or 
directly, via the object code:  “A ‘computer program’ is a set of statements or instructions to 
be used directly or indirectly in a computer in order to bring about a certain result.”  17 U.S.C. 
§ 101 (2000); see Vetter, supra note 7, at 578-80 (describing a three-element model of 
computing, including:  a first element, the source and object code forms of the computer 
program; a second element, the operating system, which is itself a special program that runs 
all the other programs; and a third element, the computing result, that is, the ongoing output 
and outcome of the various programs running and interacting in the operating system). 

Often the programmer “finishes” the source code many times, meaning that upon 
compiling and running the software, she discovers problems.  Thus, refining and finishing 
software is an iterative, trial-and-error process. 

128.    Vetter, supra note 7, at 584. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 99 

 

sixty-page129 computer program and reworking half of it by trivial 
reprogramming.130  Both the resulting source code and object code would 
likely infringe the original.  If the original source code was GPL protected 
open source software, the resulting software would be part of the “whole” 
and necessitate redistribution under the GPL.  This is the minor modification 
example.  The reproduction right for both literal and non-literal copying131 is 
involved.  The derivative work right may be involved as well.132 

In the same way that someone could make increasingly drastic and 
extensive modifications to a copy of this Article, so could a programmer 
increasingly revise the sixty-page program.  But even for these increasing 

                                                                                                               
129.    I use the phrase “sixty-page computer program” only to convey a sense of the 

work’s scope.  The computer does not measure the program’s length in pages, but perhaps by 
the size of the file that holds it.  Programmers might size the program by the lines of code that 
it contains.  And, if one printed it, it would paginate, and reveal its sixty-page length. 

130.    In this example of a hypothetical sixty-page computer program, I should point out 
an oversimplification:  the implicit assumption that there is copyright protectable expression 
in the program.  Presumably, the program has “thin” copyright protection from improper 
literal misappropriation.  Menell, supra note 91, at 65-66 (“Copyright law provides a thin 
layer of protection for computer software, effectively prohibiting wholesale piracy of 
computer programs without affording control for interface specifications and other essential 
elements of computer functionality.”); see, e.g., Eng’g Dynamics, Inc. v. Structural Software, 
Inc., 26 F.3d 1335, 1348 & n.15 (5th Cir. 1994) (noting that “‘highly functional’ software may 
lie very near the line of uncopyrightability”).  

For non-literal copyright infringement, however, the program may or may not have 
expression that survives the first two stages of the abstraction-filtration-comparison test of the 
Second Circuit’s Altai decision.  Computer Assocs. Int’l v. Altai, Inc., 982 F.2d 693, 706-10 
(2d Cir. 1992) (announcing the test and applying the first two steps); see Menell, supra note 
91, at 84 (noting that Altai has received a broad following). 

131.    In cases involving non-literal infringement, courts have applied the 
“abstraction-filtration-comparison” test set forth in Altai, or some variation thereof.  See, e.g., 
Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 834-38 (10th Cir. 1993)  
(adopting the Altai approach, but specifically identifying six different levels of abstraction and 
six different elements subject to filtration).  In literal infringement cases, however, where 
exact copying can be shown, courts are divided on whether to apply the same test.  Compare 
Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1544-46 (11th Cir. 1996) (finding that the Altai 
test applied in a case where literal infringement was shown), with Sony Computer Entm’t, Inc. 
v. Connectix Corp., 48 F. Supp. 2d 1212, 1217 (N.D. Cal. 1999) (omitting the “filtration” step 
when the defendants admitted to copying), rev’d on other grounds, 203 F.3d 596 (9th Cir. 
2000). 

132.    The qualification as to whether the derivative work right is involved arises from 
the somewhat ambiguous nature of that copyright entitlement.  See NIMMER, supra note 28, § 
3.01 (“In a broad sense, almost all works are derivative works in that in some degree they are 
derived from preexisting works.”). 



100 RUTGERS LAW JOURNAL [Vol. 36:53] 

revisions, the modified program is likely to be part of the “whole” because it 
will continue to be based on the original.133 

In the modification examples, I have assumed without saying that the 
modifications are all new code.  That is, they are new authorship and not 
copied from preexisting material.  While this assumption is somewhat 
artificial, I use it to confine what I mean by a modification. 

Often, however, programmers change and evolve code by inserting 
segments of preexisting code from a variety of sources.  When this occurs 
while revising the originally-received open source software,134 I call it 
extending the source code.  The extension may be a verbatim insert of other 
source code, or it may be an insert followed by some revisions necessary to 
adopt the inserted code to the target program’s operation. 

Figure 1, below, depicts the different ways to modify and extend source 
code discussed above. 

                                                                                                               
133.    The increasing revisions of the program might at some point eliminate all literal 

infringement, leaving only non-literal reproduction right infringement.  Increasing revisions 
move the modified work into a gray zone overarching non-literal infringement and preparation 
of a derivative work.  Loren, supra note 32, at 63-64.  Classic derivative works of this Article 
would include a translation into Spanish, and a documentary film based on it.  Similarly, a 
translation of the original program into another computer language would be a derivative 
work, as might an audio-visual training CD based on the program, using the program as an 
example training exercise. 

134.    Under my description, which compares the computer program to this Article, 
modification and extension of the program are likely to result in new, “other” software being 
included in the “whole” for both the program’s source and object code.  The example is 
simple in that both this Article and the hypothetical program are thought to be managed as a 
single unit.  That is, although it need not be this way, each is stored in a single computer file.  
The programmer makes the modifications or extensions to the file containing the source code, 
and compiles a new object file that the computer can execute.  Many have experienced this 
simple situation when they first learned to write a program:  one file of source code gets 
compiled into a single executable file, which, when executed, runs and performs a computing 
operation. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 101 

 

Figure 1 – Modifying and Extending Software 
 Modify 

portions 
Pervasively 
modify 

Extend Key 

D
ev

el
op

m
en

t E
nv

iro
nm

en
t 

   

Original code: 

___ 
Modified code: 

 
Other code: 

 

 
In Figure 1, the first two illustrations show code modified to a different 

extent.  A real-world example of pervasive modifications would be 
translating a program from one programming language to another, perhaps 
from the C programming language to the Java language.  The code extension 
illustration shows that one can add new code to a program, but might need to 
modify some of the original to fit the new code into the puzzle.  All of these 
illustrations assume that the programmer develops the software in the 
development environment and generates a single executable to run the new 
program. 

To discuss the next set of scenarios, I must complicate things with some 
abstractions and variations.  In the simple situation, the file is just a 
container.  To think of the software as confined to a single file (like my 
Article is confined to a single Microsoft Word file) is to place an artificial 
limit on how the code can be organized into containers, and on the types of 
containers usable.  Things other then traditional computer files, such as 
databases, repositories, and source code control systems,135 can hold the 
source code.  These variations are concrete in the sense that they all name 
real mechanisms and capabilities available in the computing environment.  
They are used by programmers to organize, catalog, and manage code. 

                                                                                                               
135.    A technical purist would probably observe that these “other things” that I note 

could hold code all rely on, or are held in, a file of some type recognized by the computer’s 
operating system. 



102 RUTGERS LAW JOURNAL [Vol. 36:53] 

To compare this to my Article, if it grows too long, I might decide to 
keep Part I in its own file, Part II in another file, and so on.  Microsoft’s 
Word product will let me work with all of these separate files as a “virtual” 
single document.  In the ordinary sense of the word, they might be part of a 
“whole” document even though they are stored using a separate Word file for 
each part.  The parts relate to and rely on each other, and each would be to 
some degree incomplete without the rest.  Similarly, the hypothetical 
sixty-page program might be stored in logical subdivisions in multiple files, 
or multiple containers of other types.  In effect, the programmer can “mix 
and match” containers holding code for a variety of pragmatic reasons.136 

In considering the containers that hold code, recall that software has both 
a source code and object code form.  This allows the mixing and matching to 
occur in and across both forms.  For example, my hypothetical sixty-page 
program might be thirty pages of newly written source code joined with 
“thirty pages” of code I have in an object code file.137  I can compile my 
thirty pages, and then join, or “link,”138 it with the “thirty-page” object code 
file to create a whole program. 

Variations from this simple example set the stage for the next section.  
The various ways to organize code into containers and then join or relate 
them in source code or object code form is just the first step in a greater 
description of the software development and execution environment.  While 
the preceding section has suggested that modified or extended open source 
software is likely to be included in the infectious terms’ conception of the 
“whole,” this conclusion is less clear when intermixing and coupling code, 
which I discuss in the next two sections. 
                                                                                                               

136.    Some typical reasons to segment code into multiple containers include:  
(i) increasing the ease of reusing the code in a segmented container; (ii) facilitating the process 
whereby multiple programmers work on the same program; and (iii) allowing incremental 
improvement to components of the program.  Each of these reasons could allegorically apply 
to the various parts of my Article. 

137.    The object code provides the executable form needed by the computer, so it is 
somewhat artificial to characterize it as “thirty pages” in length, but assume that the source 
code from which it is compiled was that long. 

138.    The use of the word “link” to describe the operation of joining the two object files 
into an executable program file has a different (but analogous) meaning compared to today’s 
internet parlance for the word “link” (the internet meaning follows a dictionary meaning for 
the word, indicating a reference from one item to another).  Link, as applied to a programmer 
“linking” two object files in the development environment, typically results in a single 
executable file containing the contents of both object files.  Thus, when a user runs the 
executable file in the computer’s runtime environment, the program is complete.  It has what it 
needs to achieve the desired computing result. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 103 

 

C.  Intermixing Code in the Development and Runtime Environments 

In the preceding section, I describe extending and modifying software as 
acts that occur in the development environment, rather than during the 
“runtime” environment.  “Runtime” is, for our purposes, simply when the 
computer is running, and when the programs of interest are executing.  In 
other words, the programmer works in her development environment writing 
code, assembling code from multiple sources, and generally planning to 
create a program that will function in the runtime environment.  In this, the 
programmer can, and usually will, build her program to rely on functionality 
provided by other programs available, or invoke-able, in the runtime 
environment.  The foremost example is the operating system.  It creates and 
delivers the runtime environment.  Every other program relies on the 
operating system to execute (i.e., run) the program, and to provide a variety 
of functions that the program can invoke to do “work” – that is, to achieve 
various computing results. 

Thus, while I reserve the terms “modifying” and “extending” for the 
developer’s activities when building the program, I apply the non-technical 
terms “intermingling” and “intermixing” as a general category descriptor for 
the various technological ways in which the programmer will write code that 
relies on other code at runtime.  In this sense, every program, when executed 
by the operating system, is intermingled or intermixed with the operating 
system.  Thus, the operating system is perhaps a special case of intermixing.  
This section will review some typical technological intermixing scenarios.  
Again, as before, the goal is to relate the technical scenario to the infectious 
terms in order to initially gauge whether the intermixing results in a “whole” 
that must be licensed under the GPL. 

Before describing these scenarios, however, I must introduce an 
additional concept about the operating system’s runtime environment:  the 
notion of a “process.” 

Computer technologists have a special name for an executing program 
that the operating system is currently running.  They call such a program a 
“process.”  A process is a program in operation or execution.  Under the 
supervision of the operating system, the program is loaded into the 
computer’s memory and shares memory and processor availability with other 
processes.  The computer has a runtime environment created by the operating 
system.  In this environment, a process is akin to an agent in the real world.  
The process can receive commands, carry them out, follow previously given 
instructions, interpret events to determine whether to follow conditional 
instructions given in the source code, access and manipulate data, 



104 RUTGERS LAW JOURNAL [Vol. 36:53] 

communicate with other processes, take actions based on messages from 
other processes, become confused, err or create errors, and die.139  One 
consequence of processes in an operating system is that they can be 
numerous.  Many programs can be executing at once, each known to the 
operating system as a process.  Processes will rely on and interact with the 
operating system, but they can also rely on and interact with other processes. 

Recall the example of my hypothetical sixty-page program created by 
joining thirty pages of new code with “thirty pages” of code I have in an 
object code file.  In the first example, I posited joining (called “linking”) the 
two code segments in the development environment.  The programmer, 
however, has an alternative.  She could join the two code segments in the 
runtime environment.  The technical term for this is “dynamic linking.”  
Instead of joining, or statically linking, the two programs into a single 
executable file in the development environment, the programmer plans for 
the object code file to be available in the runtime environment.  She writes 
her program to invoke or call functions in the object code file, without 
having those functions necessarily be in the executable container file that 
creates the process, or be wholly copied into the process itself.  The object 
file that she will invoke at runtime may go by several names, depending on 
the operating system and technology involved.  These names include “shared 
libraries,” “libraries,” or “dynamically linked libraries.” 

Both static and dynamic linking are examples of intermingling and 
intermixing code.  The former intermixes in the development environment by 
linking or compiling the code into a single unit or container.  Dynamic 
linking intermixes in the runtime environment; the executing process invokes 
or calls the code from another container (typically a file).  The invoked code 
performs some expected function or work for the invoking program.  This 
linked code is often called a “library.”  The differences between static and 
dynamic linking may have copyright implications.  From the perspective of 

                                                                                                               
139.    Another comparison that may be useful is to envision a computer program and 

process as analogous to a recipe.  The recipe, which is like the source code, provides the 
sequence of instructions.  Imagine that it is written in a language the kitchen’s cook does not 
understand, so someone translates (compiles) it for that cook (operating system) so the cook 
can implement the recipe in the kitchen (computing hardware).  Thus, while the cook is 
implementing the recipe, that is, while the dish is in progress, it is a “process” – a recipe being 
“run” or “executed.”  A cook implementing the recipe in the kitchen is like an operating 
system running a program (resulting in a process) in a computer.  See Vetter, supra note 7, at 
580-82 (describing in greater detail the recipe-cook-kitchen analogy for software and 
computing); see also Zittrain, supra note 6, at 271 (analogizing a computer program to a 
recipe in the context of decompiling object code into source code). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 105 

 

the linked, library object code file, assuming copyright protectable 
expression in that file, static linking triggers, in the development 
environment, the reproduction right in the library object code file.  Static 
linking may also trigger the derivative work right.  The static link operation 
creates a copy of some or all of the code in the linked object file. 

Dynamic linking, however, does not generally create copies of the 
library object code file in the development environment (although it may 
cause copy creation later at runtime because the invocation may load the 
library object code into memory, which under current copyright doctrine is a 
copy that violates the reproduction right).  During development, the 
thirty-page source code program need merely refer to the functions it will 
later invoke, in runtime, in the object code file.  It need not copy them into 
the executable file, as would a static link. 

The situation changes for dynamic linking in the runtime environment.  
The calling program is executed, meaning that the operating system runs it as 
a process.  Depending on how the programmer has determined to use and 
invoke it, the library object code file may be loaded into memory when the 
calling program is executed, or may be loaded later during the life of the 
process.  Sometimes the library object code that the calling program expects 
to use is already loaded into memory because it is a “shared library.”  
Whether the library object file is exclusively intended for use with the calling 
program, or is a shared library, the distinguishing feature is that the code 
executed by the process for part of its work is code that was not found in the 
original executable container file.  That file contains only a reference to the 
library-located code (and perhaps contains some supporting technical 
information for the reference).  Thus, while planned by the programmer 
during development, the intermingling and intermixing of the calling 
program and the library object file actually occur during runtime. 

This section has explained a number of ways software can be intermixed 
by programmers, contrasting intermixing that occurs during development 
versus runtime.  This intermixing occurs across multiple containers that 
might hold source or object code.  By these two factors, (i) multiple 
containers, and (ii) the development versus runtime distinction, I distinguish 
intermingling and intermixing from the more simple ways of modifying and 
extending the code in a single file (container) discussed in the previous 
section.  The simple modification and extension of code is analogous to 
creating, revising, and perhaps supplementing, a single Word document.  
Intermingling and intermixing code is like referencing, linking, and 



106 RUTGERS LAW JOURNAL [Vol. 36:53] 

combining several Word documents into a greater whole, yet retaining the 
separateness of each document. 

Figure 2, below, illustrates intermixing software in the development and 
runtime environments. 
Figure 2 – Intermixing Software 
 Modify to intermix Ready to intermix Key 

E
ith

er
 E

nv
iro

nm
en

t 

  

Static linking 
combines in the 
development 
environment 
Dynamic 
linking 
associates in the 
runtime 
environment 

 
In Figure 2, the first illustration shows code that needs modification to 

intermix.  Alternatively, some software is designed to intermix with other 
code, shown in the example in the second full column of Figure 2.  In either 
case, both illustrations could fit together in one of two ways.  First, the 
programmer could combine the code into a single file in the development 
environment by statically linking them into a single, executable object code 
file.  Second, the original code and the new code could remain in separate 
files until runtime, where dynamic linking allows code from both files to run 
under the control of the process executing the program. 

This section builds on the previous section that explained modifying and 
extending code.  The next step is intermixing code, which can occur in either 

D
ev

el
op

m
en

t E
nv

iro
nm

en
t 

  

Original 
code: 

___ 
Modified 
code: 

 
Other 
code: 

 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 107 

 

the development or the runtime environment.  Intermixing code also shows 
that software can be arranged in multiple containers, usually files.  These 
boundaries will impact the analysis as to whether infectious terms should 
reach “other” software combined with open source software.  The next 
section adds the last level to this continuum by describing how separate 
processes (programs in execution) might interact. 

D.  Coupling and Integrating Software in the Runtime Environment 

A program in execution is a process, and a process is like an agent in the 
real world.140  The process is an agent interacting with other agent-processes, 
all under the watchful eye of the computer’s operating system (which is itself 
a specially delineated collection of processes).  Many software applications 
are in fact multiple agent-processes enacting cooperative processing or 
delivering a unified user experience.  Together, they deliver functionality to 
the user, sharing work based on the programmer’s design, which springs 
from the nature of the computing tasks involved in the application, and the 
technology platform for the computer, i.e., what operating system and other 
software technology is available. 

These cooperating processes are coupled or integrated.  This means that 
they are designed to work together interactively by sharing data and 
referencing each other, whether they comprise an identified application (such 
as a database, office productivity package, etc.) or whether they simply make 
use of each other’s services.  Some processes exist to serve.  They come 
alive at some point, launched by the user or an event knowable by the 
computer, and then wait for other processes to ask them to serve.  An 
example is a process (or group of processes) that couriers data from process 
to process according to a common protocol.  Processes can interact through 
messaging or other mechanisms provided by the operating system.  One 
process can cause another to come to life, ask it to do work, and terminate it 
when the work is complete.141  An application might consist of several 
processes that all start at once and cooperatively deliver functionality, to end 
                                                                                                               

140.    A process can receive commands and follow instructions, interpret events, 
manipulate data, communicate with other processes, err or create errors, and die.  See supra 
Part III.C. 

141.    Bringing a process to “life” by initiating a computer program to execute in the 
operating system usually involves loading executable code into memory.  This is a violation of 
the reproduction right for any copyright protected code in the executable file.  See Liu, supra 
note 45, at 1264-67 (noting that digital copies containing copyright protected content violate 
copyright’s reproduction right under the RAM copies doctrine). 



108 RUTGERS LAW JOURNAL [Vol. 36:53] 

users, or perhaps as part of the inner workings of some computing resources 
such as a database or networking capability. 

Within a single computer, processes represent the last concept needed to 
cover the potential configurations of software that might cause other 
software that is somehow connected with GPL protected code to fall under 
the GPL’s definition of the “whole.”  Processes are one of the cornerstone 
design concepts underpinning current operating systems.  Recalling the 
divisions discussed above,142 programmers have tremendous flexibility when 
designing an application.  They can locate the code in one or more container 
files, and link those files statically in the development environment, or 
deliver multiple executable files to the user and arrange for dynamic linking 
of executable code.  Thus, a single process may draw from one or more 
code-containing files for its computer program instructions.  This single 
process, however, might be merely one among many that comprise the 
application.  Designers can arrange and configure an application among one 
or more processes, each arising from one or more code-containing files, 
depending on the desired design factors.143 

Figure 3, below, illustrates coupling and integrating software in the 
runtime environment. 
Figure 3 – Coupling and Integrating Software 
 Communication mechanisms Shared resources Key 

 

                                                                                                               
142.    See supra Part III.C. 
143.    Design factors to determine whether to use multiple processes in a software 

application include: (i) the type of application; (ii) the data it will store, use, or deliver; 
(iii) the sophistication of the end users; (iv) the operating system(s) upon which it will run; 
and (v) many other considerations. 

R
un

tim
e 

En
vi

ro
nm

en
t 

 

 

 

Original 
process: 

___  

 
Other 
process: 

 
(shared resources) 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 109 

 

In Figure 3, the illustrations suggest some of the typical means by which 
processes interact and integrate in the runtime environment.  Each program, 
while in execution under the operating system, is a process.  Like a person in 
the real world, the process can communicate with others, exchanging data or 
signaling status, interests, or other attributes.  The first illustration shows 
this.  The second illustration shows two processes using a shared resource, 
and thereby coupling or integrating.  The shared resource could be computer 
memory, a file, or other resources found within the operating system.144 

Before moving to the next section, where I will apply the GPL’s terms in 
the context of this framework, I have summarized Part III in the following 
table: 
Table 1 – Summary:  The Technological Framework for Infectious Ambit 
Category Modify or 

Extend 
Intermingle or 
Intermix 

Couple or 
Integrate 

Mere 
Aggregation 

Description Software in a 
single 
container or 
file, modified; 
or extended by 
copying code 
from external 
sources 

Software in 
multiple 
containers, 
intended to 
function under 
the control of a 
single process, 
linked at 
development or 
runtime 

Software in 
multiple 
processes, 
interacting and 
interdependent to 
some degree 

Separate 
software on 
the same 
media 

 
This framework describes the technological options that bear on whether 

the GPL’s infectious “whole” requires the non-open source software to 
succumb to its terms.  The framework, however, applies beyond the GPL to 
any open source software license.  The GPL is only my foil; other licenses 

                                                                                                               
144.    While I will not extend my framework further, it is even possible to have a 

software application comprised of multiple processes, but where the processes are located on 
different computers connected by a network.  There is no particular need to extend my 
framework because, for the purposes of this Article, such a configuration is not so dissimilar 
from multiple processes operating on the same computer.  From the software’s perspective, it 
may use different mechanism(s) to communicate to other, remotely located processes or gain 
access to shared resources.  Regardless, network connected processes are sufficiently similar 
to processes interacting on the same system to allow them to be considered together in the 
analysis of the GPL’s “whole.” 



110 RUTGERS LAW JOURNAL [Vol. 36:53] 

have infectious terms.145  Licenses that implement infectious terms, or 
conversely, licenses that wish to provide a safe harbor from such terms, may 
wish to define a boundary somewhere along this framework. 

Better boundaries for infectious scope reduce problems of uncertainty 
cost and chilling interoperability.  In this, infectious terms may retain their 
beneficial aspects to support open source development and prevent 
privatization, yet shed problematic effects and disincentives that limit their 
efficacy to support the open source movement. 

The next part discusses the GPL’s approach to the problem, building on 
the earlier discussion of the GPL’s conception of a “whole.” 

IV.  THE INFECTIOUS GPL TERMS IN THIS FRAMEWORK 

The GPL provides a reasonably certain safe harbor from its infectious 
terms for software merely aggregated with open source software, but appears 
to offer scant guidance for the scenarios of modifying, extending, 
intermixing, or coupling other software with the GPL protected open source 
code. 

Section IIIA above analyzed the GPL’s safe harbor for (i) aggregated or 
(ii) identifiably independent and separate software.  Without repeating this 
analysis, both of these safe harbors are clearly intended by the license to 
remove other software from the “whole.”  They are likely to be effective for 
several reasons.  First, such programs are outside the framework established 
above.  They are not coupled and integrated, just as a music department is 

                                                                                                               
145.    See, e.g., Mozilla Public License, supra note 48, § 3.1 (“The Modifications which 

You create or to which You contribute are governed by the terms of this License . . . .”); 
Nokia Open Source License, supra note 48, § 3.1 (same); Sun Public License, supra note 48, 
§ 3.1 (same).   

The infectious terms in these licenses, however, are softened by a provision allowing for 
the creation of a larger work that does not have to be released under the same license terms.  
See Mozilla Public License, supra note 48, § 3.7 (“You may create a Larger Work by 
combining Covered Code with other code not governed by the terms of this License and 
distribute the Larger Work as a single product.”); Nokia Open Source License, supra note 48, 
§ 3.7 (same); Sun Public License, supra note 48, § 3.7 (same).   A “larger work” is defined as 
“a work which combines Covered Code or portions thereof with code not governed by the 
terms of this License.”  Mozilla Public License, supra note 48, § 1.7; see Nokia Open Source 
License, supra note 48, § 1; Sun Public License, supra note 48, § 1.7.  When a “larger work” 
is created, the terms of the license still apply to the code originally covered.  Mozilla Public 
License, supra note 48, § 3.7; see Nokia Open Source License, supra note 48, § 3.7; Sun 
Public License, supra note 48, § 3.7. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 111 

 

not coupled and integrated with a law school merely because both are in the 
same university. 

Second, works identifiably independent and separate, or merely 
aggregated, are unlikely to be derivative works of each other in a copyright 
sense.146  The safe harbors amplify this point, and build it into the license 
permissions implemented by the GPL’s open source approach.  Regardless of 
whether an open source license implements a contract between contributing 
programmers and users/redistributors,147 the license grants conditional 
permissions to users and redistributors.  As long as one complies with the 
conditions, she can redistribute modified or unmodified open source software 
knowing that any technical violation of copyright’s reproduction right or 
derivative work right is excused.  In the GPL, the safe harbors draw a 
relatively bright line that is perhaps redundant (from a non-contract 
perspective) because it is likely beyond anything captured by the derivative 
work rubric.  While it is unlikely an identifiably independent and separate 
program, or a merely aggregated program, would be a derivative work, the 
safe harbor states that permission is granted to package the open source 
software with other software in this way.  It says one can do something they 
would likely be able to do anyway under copyright law.148 

                                                                                                               
146.    See Loren, supra note 32, at 76-90.  Some copyright doctrine in a non-software 

setting challenges the notion that mere juxtaposition would not create a derivative work.  
Mirage Editions, Inc. v. Albuquerque A.R.T. Co., 856 F.2d 1341, 1342-44 (9th Cir. 1988) 
(holding that the defendant prepared a derivative work by removing individual images from an 
art book and mounting them on ceramic tiles).  But see Lee v. A.R.T. Co., 125 F.3d 580, 
581-82 (7th Cir. 1997) (finding, under the same facts, images mounted on ceramic tiles did 
not constitute a violation of the derivative work right, and noting that scholarly criticism of 
Mirage has been pervasive). 

147.    See McGowan, Legal Implications, supra note 4, at 289-302 (describing and 
analyzing a number of the potential doctrinal questions of contract law raised by the GPL); 
Stephen M. McJohn, The Paradoxes of Free Software, 9 GEO. MASON L. REV. 25, 62-63 
(2000) (discussing the enforceability of open source licenses, noting that the GPL’s model of 
assent by use is a low threshold “going beyond even conventional clickwrap and shrinkwrap 
provisions”); Daniel B. Ravicher, Facilitating Collaborative Software Development:  The 
Enforceability of Mass-Market Public Software Licenses, 5 VA. J.L. & TECH. 11, Part III.A, 
¶¶ 43-52 (2000), at http://www.vjolt.net/vol5/issue3/v5i3a11-Ravicher.html (discussing 
leading cases that might bear on the enforceability of mass-market public software licenses). 

148.    See Loren, supra note 32, at 76-90.  Loren argues on policy and doctrinal grounds 
that the “derivative work right should not extend to encompass integrated works which do not 
copy any of the portion of the works they may reference.”  Id. at 76. 

There is a slight difference between the situations analyzed by Loren and dynamic 
linking of executable software in the runtime environment.  Dynamic linking may copy some 
 



112 RUTGERS LAW JOURNAL [Vol. 36:53] 

Because the GPL’s safe harbors draw a clearer boundary, they are more 
useful than its delineation of the “whole” to define the ambit of its infectious 
terms.  On its face, the GPL gives little hint about what is included in the 
“whole.”  However, one reasonable (and oft assumed) interpretation is that 
the “whole” incorporates copyright’s conception of a derivative work.149  The 
GPL refers to works included in the “whole” as a “work based on the 
Program” which “contains or is derived from the Program or any part 
thereof.”150  This suggests that the GPL intends to apply the copyright 
derivative work standard to delineate whether other software is included in 
the “whole.”  Certainly, some commentators have read the GPL this way.151 

There are several consequences of defining the GPL’s infectious 
“whole” by reference to copyright’s derivative work, including uncertainty 
and the emergence of alternative guidelines not specified in the license’s 
text.  The uncertainty is inherent in the derivative work rubric as applied to 
modified, intermixed, and coupled software.152  Some of these alternative 
guides come from practice among open source programmers, and one in 
particular comes by way of comparing the GPL to a little-cousin license also 
promulgated by the Free Software Foundation:  the Lesser General Public 
License (Lesser GPL).153  I take up each of these alternatives in turn. 

                                                                                                               
information from the invoked code into the calling program’s process.  The programmer of the 
invoked code determines what information is transferred.  In essence, the transferred 
information is a specification of (or access point to) what is available for use in the invoked 
code.  Even with such copying, however, it is possible that dynamic linking will fall under 
Loren’s analysis if the information copied:  (i) is unprotectable functionality; (ii) is public 
domain data/protocol specifications or information; or (iii) is otherwise not copyright 
protectable expression.  Furthermore, such copying is unlikely to meet either a “substantial 
similarity” or “substantial incorporation” standard for limiting the reach of the derivative work 
right.  See id. at 85 (describing these two standards as fundamental to limiting the derivative 
work right). 

149.    See Gomulkiewicz, supra note 23, at 89-92 (discussing several different possible 
interpretations of section 2(b) of the GPL and questioning whether it “treats ‘derived works’ 
as something different and potentially broader than copyright derivative works”); McGowan, 
Legal Aspects, supra note 7, at 17 (noting that “any program that qualifies under copyright 
standards as a work derived from a GPL’d work must itself be released under the GPL”). 

150.    GPL, supra note 8, §§ 2, 2(b). 
151.    See sources cited supra note 149. 
152.    See sources cited supra notes 32-34. 
153.    GNU Operating System - Free Software Foundation, GNU Lesser General Public 

License, at http://www.gnu.org/copyleft/lesser.html (last visited Dec. 20, 2004) [hereinafter 
Lesser GPL]. 

At one point, the FSF used the name Library General Public License for the Lesser GPL.  
Id.  The original label associated the license with shared libraries – executable object code 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 113 

 

A.  User Programs and the Linux Kernel 

Among practices that specify the GPL’s infectious reach in various 
contexts, the most important one appears in the heart of GNU/Linux.  Early 
in the Linux kernel project its originator, Linus Torvalds,154 determined that 
user programs155 licensed under terms other than the GPL, including 
proprietary terms, may make normal system calls to the otherwise 

                                                                                                               
(typically in separate container files) available, or invoke-able, during the runtime 
environment for other software programs to reference and execute. 

The FSF renamed the license as part of a general effort to deemphasize it.  See Richard 
Stallman, Why You Shouldn’t Use the Library GPL for Your Next Library, at 
http://www.gnu.org/licenses/why-not-lgpl.html (last visited Dec. 20, 2004) [hereinafter 
Why-Not-LGPL] (describing that, in the future, the GNU project will apply the GPL rather 
than the Lesser GPL to many software libraries, and discussing some of the relative 
advantages and disadvantages of each, arguing that “[u]sing the ordinary GPL for a library 
gives free software developers an advantage over proprietary developers:  a library that they 
can use, while proprietary developers cannot use it”). 

154.    Contributors, in OPEN SOURCES:  VOICES FROM THE OPEN SOURCE REVOLUTION, 
supra note 2, at 269-70 (describing Linus Torvalds as the creator of the Linux kernel). 

155.    Torvalds’ use of the term “user programs” requires explanation of another 
technical concept, albeit in a generalized way ignoring many technical nuances.  Recall that 
the computer runs many processes, each of which is a program in execution, i.e., a program 
running under the supervision of the operating system.  Also recall that the kernel of the 
operating system can be thought of as the first and most powerful process among all the 
processes running in the computer.  See supra text accompanying note 139; infra note 154.  
Due to the superiority of the kernel “process,” it is said to run in “kernel mode.”  For present 
purposes, take this to mean that only the kernel can interact directly with the computer’s 
physical hardware.  User programs cannot interact with the hardware.  Thus, they run in 
“user” mode during normal execution.  User programs, however, when they make normal 
system calls, are using/running the kernel’s code, and thus may momentarily switch to kernel 
mode for these operations. 

Given this technical explanation, part of Torvalds’ confidence that user programs making 
normal system calls are not infected by the GPL comes from this important technical 
distinction.  The technical distinction prompted his view that normal system calls are not 
works derived from the kernel.  In the class of UNIX-like operating systems to which 
GNU/Linux belongs, the technology makes this fundamental distinction between kernel mode 
and user mode.  The distinction supports Torvalds’ intuition that the user processes are not 
derived works merely by making normal system calls.  Regardless, Torvalds followed the 
intuition with a written statement when he originally put the Linux kernel under the GPL. 
Torvalds, The Linux Edge, supra note 2, at 109.  That statement can reasonably be taken as a 
modification to the GPL’s broad infectious terms.  In effect, Torvalds modified the GPL, and 
licensed the kernel under the modified GPL. 



114 RUTGERS LAW JOURNAL [Vol. 36:53] 

GPL-licensed Linux kernel.156  Torvalds describes this determination as one 
of the most important non-technical decisions enabling the Linux kernel’s 
success.157  His decision facilitated compatibility by removing a degree of 
uncertainty about the GPL’s infectious terms. 

Within a specific, yet important technological context, concerns about 
what would be included in the “whole” were diminished.  As a result, 
vendors of proprietary software packages were willing to offer versions of 
their products that ran on the Linux kernel, knowing Torvalds’ decision 
lowered the risk of claims that by merely running on the kernel their code 
must now be open-sourced.158  One key example is the database product, 
Oracle.159  It is the most ubiquitous commercial database software package in 
computing.  Its availability on GNU/Linux heightens the desirability and 
demand for GNU/Linux-based systems.  Other examples abound.160 

                                                                                                               
156.    Torvalds, The Linux Edge, supra note 2, at 108-09.  Torvalds describes his 

normal system call decision as follows: 
We ended up deciding (or maybe I ended up decreeing) that system calls would 

not be considered to be linking against the kernel.  That is, any program running on 
top of Linux would not be considered covered by the GPL.  This decision was made 
very early on and I even added a special read-me file . . . to make sure everyone 
knew about it.  Because of this commercial vendors can write programs for Linux 
without having to worry about the GPL. 

Id.  
The special read-me file appears as a preamble to the GPL as applied to the Linux kernel.  

It specifies that rights arising from the kernel are disclaimed to exclude derivative work rights 
in application programs that use kernel services by normal system calls.  Thus, Torvalds 
declared that this intermixing of the software would not be part of the infectious “whole.”  
Torvalds, preamble to the GPL (June 1991), reprinted in OPEN SOURCES:  VOICES FROM THE 
OPEN SOURCE REVOLUTION, supra note 2, app. B, at 263.   

157.    See Torvalds, The Linux Edge, supra note 2, at 108. 
158.    See Jerry Epplin, Using GPL Software in Embedded Applications, at 

http://www.linuxdevices.com/articles/AT9161119242.html (last visited Dec. 20, 2004) (“This 
explains why so many large software companies, such as Oracle, have released Linux versions 
of their proprietary products.  Virtually no one contends that merely running a program under 
Linux obligates you to release your software under the GPL.  And this conclusion is 
reinforced by Linus’ GPL clarification.”). 

159.    Oracle is #1 on Linux, at http://www.oracle.com/ip/deploy/database/theme_pages/ 
index.html?linux_02032003.html (last visited June 1, 2003, but later found to be unavailable 
at this address) (on file with author) (describing Oracle’s commitment to, and product 
offerings for, GNU/Linux).  

160.    Other prominent proprietary software companies now selling products designed to 
run on Linux include SAP and VERITAS.  See SAP, SAP on Linux, Frequently Asked 
Questions, at http://www.sap.com/solutions/netweaver/linux/faq/tech_faq.asp (last visited 
Dec. 20, 2004) (noting that “SAP was the first software [company] in the world that run [sic] 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 115 

 

Torvalds’ practical decision implemented a practice that reduced 
uncertainty.  The result was greater market penetration by GNU/Linux due to 
the greater compatibility it offered, in addition to its other benefits.  The 
compatibility made GNU/Linux a more attractive technology platform 
because users could do more with it.  More applications were available, 
increasing for GNU/Linux users the overall benefit and usefulness of a 
GNU/Linux-based computer system.  Given these beneficial effects, it is 
important to understand the role of Torvalds’ decision in the framework of 
extending, intermixing, and coupling software. 

Among the three categories in the framework, (i) modify or extend 
software, (ii) intermingle or intermix software, and (iii) couple or integrate 
software, Torvalds’ decision relates to the latter two categories.  When a user 
program makes normal system calls to the Linux kernel, it is in essence 
intermixing itself with the kernel in the way described in the framework.  
Alternatively, it might be thought to be coupled with the kernel, depending 
on the technical implementation.  The programmer has planned for the 
program to perform some function, but has not supplied the source code for 
that function.  Instead, by design, the program looks to other executable 
object code to perform that function. 

This other code is found in the Linux kernel, accessed by the “normal 
system call” discussed by Torvalds.161  “Normal” Linux kernel system calls 
                                                                                                               
mission-critical ERP operations on Linux”); VERITAS, VERITAS for Linux, at 
http://www.veritas.com/van/technologyzone/linux.jsp (last visited Dec. 20, 2004) (“VERITAS 
Software’s market-proven suite of storage management, enterprise data protection and 
application availability technologies combine to bring greater enterprise capabilities to Linux . 
. . .”).  

161.    By necessity, the description in this paragraph generalizes a great many technical 
details.  One detail worth mentioning is that the executable object code in the Linux kernel is 
itself a source of controversy over the scope of the GPL’s infectious terms.  In the 
technological framework I have developed thus far, the best way to conceive of the kernel is 
that it is the first and most powerful process among all the processes running in the computer.  
It is first because when the computer powers up and “comes to life” it runs the executable 
object code designated as the kernel.  It is the most powerful process because it has control 
over the physical hardware, and remains the master scheduler of the other processes 
(programs in execution).  It mediates all other processes’ use of the hardware.  They must ask 
for access, and ask the kernel to cause the hardware to perform hardware-related work for 
them.  The kernel decides when to give them computing time for their work, and when they 
have to wait for other processes. 

The Linux kernel is modular.  Programmers other than Torvalds and other kernel 
programmers can use a standard approach provided by the kernel to add “modules” to the 
kernel.  In my framework, this falls into the middle category, intermingling or intermixing 
 



116 RUTGERS LAW JOURNAL [Vol. 36:53] 

are best defined for our purposes as those that are documented as such (i.e., 
the interface specification for the system call is published).162  Whether the 
program’s use of a normal system call is in either the second or third 
category is less important than realizing why it is not in the first:  the 
program’s source code and the Linux kernel’s source code are not melded 
together in the development environment to execute under common control 
in the runtime environment.  The Linux kernel is not extended or modified 
by bringing into it the program’s source code.  The two sets of source code 
remain separate in the development environment, classifying their 
interactions into the second or third category. 

Torvalds clearly meant to draw a boundary in an important technological 
way in order to reduce the uncertainty associated with the GPL.163  He staked 
his boundary in a special “read-me” file.  Open source software usually 
carries its license along with the files holding the software.  The open source 
license in use, such as the GPL, may be stated in a file in its entirety.  In 
addition, each of the source code files may contain delineated, 
                                                                                                               
code in the runtime environment, although it is different in certain ways because the other 
programmers are intermixing their code with the operating system kernel.  The Linux 
community technical term for this capability is “loadable kernel modules,” or LKM.  Use of 
LKMs has been a source of GPL controversy because some vendors have provided LKMs that 
are not under the GPL.  One common use for a LKM is to provide a device driver.  A device 
driver helps the Linux kernel communicate with a hardware device. 

For example, assume: (i) that a vendor provides a LKM device driver for the kernel to 
interface with a new graphics card; (ii) that the graphics card is popular and many GNU/Linux 
users want to use it; and (iii) that the vendor is unable to disclose the source code of the device 
driver, a restriction which could occur for many reasons.  Since the GPL covers the Linux 
kernel, the question is whether its infectious terms should cause the LKM device driver to go 
under the GPL.  If so, the device driver will not be available for Linux, which could very well 
mean that the desired graphics card might not be available for use with Linux (typically, 
hardware manufacturers are best positioned to write or commission device drivers for their 
hardware).  In this example, the threat of GPL infection eliminates the availability of the 
graphics card.  The example illustrates the general effect on LKMs arising from a GPL 
protected Linux kernel.  LKMs are a useful technological approach to extend the kernel or 
increase the entire operating system’s interoperability with the greater world.  These benefits 
engender the controversy because some LKM device drivers are not GPL protected. 

162.    See Email from Linus Torvalds to a redacted questioner (Oct. 19, 2001, 13:16:45 
PDT) (discussing public, published software interfaces for the Linux kernel and noting that 
when an “interface is published, [it is meant] for external and independent users.  It’s an 
interface that we go to great lengths to preserve as well as we can, and it’s an interface that is 
designed to be independent of kernel versions.”), at 
http://www.atnf.csiro.au/people/rgooch/linux/docs/licensing.txt (last visited Dec. 20, 2004) 
[hereinafter Torvalds Email]. 

163.    See Torvalds, The Linux Edge, supra note 2, at 108-09. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 117 

 

license-identifying information.  For example, a source code file might have 
a “comment” statement164 near its beginning, saying that it is licensed under 
the GPL.165  While a variety of methods might work to communicate the 
licensing information, Torvalds’ approach was effective to provide notice 
that his view of the GPL, as applied to the Linux kernel, would allow 
non-GPL-protected software to run on an operating system based on the 
Linux kernel.  Another way to look at this, which I prefer, is to say that the 
Linux kernel uses a slight variation of the GPL license.  I call this variation 
the “GPL with immunization for normal calls,” or GPL-INC.166 

                                                                                                               
164.    A comment statement is non-functional.  The compiler ignores it when it 

translates the source code into the executable object code.  Most source code typically 
contains comments, and they are used in the ordinary sense of the word – to comment on the 
code.  Even though not used in the object code, comments can play an important role in 
making the source code valuable.  Some programmers document the operation of the code 
through comments.  These efforts are sometimes extensive, and sometimes minimal.  The 
need for comments to explain the code may depend on the complexity of the problem being 
solved and the programmer’s skills.  A general axiom is that a sprinkling of comments can 
help the readability and understandability of a well-designed and well-written program, 
particularly at junctures in the logic.  But, continuing the axiom, commenting, no matter how 
extensive, is unlikely to make a poorly designed program with unnecessarily complex and 
hard to understand structure readily understandable.  One can often glean the history 
associated with a program’s development from the comments, including approaches tried and 
abandoned, particularly troubling problems encountered and solved, and perhaps a record of 
who programmed particular sections of the source code.  Finally, as mentioned in the text, 
sometimes even legal notices, such as a copyright or licensing notice, are placed in source 
code comments. 

165.    Another approach is that used by Torvalds:  put licensing information into a file 
named according to a convention (“read-me”) that signals one to read the file’s contents. 

166.    If one interprets Torvalds’ “immunization for normal system calls” notice as a 
license permission, then one characterization is that Torvalds wrote his own license.  He did 
so by copying the GPL, but then further specified a technical scenario where the GPL’s 
infectious terms did not apply, resulting in the GPL-INC (GPL with immunization for normal 
calls).  In this scenario, of course, Torvalds’ license is mostly the original work of others, but 
his set of permissions is different by way of greater specificity.  Assume for a moment that 
Torvalds did this with his first version of the Linux kernel code.  As later programmers 
contributed code, establishing the web of licensing interdependency, are they bound by the 
GPL or the GPL-INC?  See Torvalds Email, supra note 162 (responding to a questioner’s 
query whether the other programmers who contributed to the Linux kernel agreed to using a 
modified GPL (i.e., a GPL with an exception to its infectious terms), by stating that “[t]he 
‘user program’ exception is not an exception at all, for example, it’s just a more clearly stated 
limitation on the ‘derived work’ issue.  If you use standard . . . system calls . . . your program 
obviously doesn’t ‘derive’ from the kernel itself.”).  In my hypothetical, the contributing 
programmers would simply have developed the Linux kernel under the GPL-INC, without, of 
 



118 RUTGERS LAW JOURNAL [Vol. 36:53] 

Perhaps Torvalds simply believed that user programs were not derivative 
works of the kernel - that they are identifiably independent and separate 
software.167  Torvalds understood the GPL’s infectious terms in relation to 
the copyright derivative work standard.168  Because they interact, user 
programs running on a Linux-kernel-based operating system seem to be 
more than a mere aggregation of the two.  Thus, the first GPL safe harbor 
would not apply, but the second might.  The theory would be that user 
programs are not derivative works (i.e., are not part of the GPL’s “whole” 
when they use published, normal system calls).  In this sense, they remain 
identifiably independent and separate because they employ only the 
published functionality given by the Linux kernel for all programs to use. 

Neither the GPL’s safe harbors, nor its concept of infecting the “whole,” 
provided Torvalds sufficient certainty.  This caused him to specify that a 
stated practice would not trigger the GPL’s infectious terms, at least as 
applied to the Linux kernel. This practice provided an alternate guide, 
providing certainty where the GPL’s open-ended concept of the “whole” 
gave less certainty. 

The next section looks at a second alternative guide; comparing the GPL 
to a little-cousin license also promulgated by the Free Software Foundation:  
the Lesser GPL.169 

                                                                                                               
course, ever using that name for the license conditions.  Regardless of nomenclature, they 
knew about the Torvalds’ exception for user programs making normal system calls. 

167.    See id. (describing Torvalds’ view that user programs making normal system calls 
are not derived works).  But see Torvalds, The Linux Edge, supra note 2, at 108-09 
(questioning whether the GPL’s derived work standard for the “whole” would encompass user 
programs making system calls, and noting that, due to the potential ambiguity, they were not). 

168.    See Torvalds, The Linux Edge, supra note 2, at 108 (describing the GPL’s 
infectious terms by reference to the copyright derivative work standard); Torvalds Email, 
supra note 162 (describing Torvalds’ view that the GPL’s infectious terms relate to the 
copyright derivative work standard). 

169.    See supra note 153 (introducing the Lesser GPL).  “[T]he GNU Lesser General 
Public License, applies to certain designated libraries, and is quite different from the ordinary 
General Public License.”  Lesser GPL, supra note 153, preamble. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 119 

 

B.  The Lesser GPL – Intermixing Libraries and Other Software 

In contrast to the GPL’s open-ended reference to the “whole” to suggest 
the reach of its infectious terms, the Lesser GPL is more specific.  Its terms 
are infectious in ways narrower, but similar to, the GPL.170  The Lesser GPL, 
however, adds an additional safe harbor:  use of the software as a library 
does not trigger infectious terms.  The library itself must be distributed as 
open source software, but the calling software need not be.  Within my 
framework, use “as a library” means that the Lesser GPL protected software 
is intermixed with other software in either the development or runtime 
environment.  The programmer has either planned that the other software 
relies on code from the library at runtime or statically linked her code to the 
library’s code.  The Lesser GPL safe harbor allows specific forms of 
intermixing,171 but in doing so provides a wealth of commentary about its 

                                                                                                               
170.    The Lesser GPL is structured following the GPL’s outline.  Many of the terms not 

of concern to my inquiry are the same or similar, such as provisions concerning warranties 
and avoiding patent rights.  The Lesser GPL’s infectious terms also involve copyright’s 
derivative work standard for its rubric of the “whole.”  It includes its own mere aggregation 
safe harbor.  It also includes an “identifiably independent and separate” work safe harbor.  
Beyond these features that are similar to the GPL, however, the Lesser GPL describes several 
additional safe harbors for using the software as a library with proprietary software. 

171.    The Lesser GPL specifies several rather technical safe harbors from its infectious 
terms.  The technical complexity relates to the previously presented framework, in particular 
to ways of modifying, extending, and intermixing code.  Section 5 describes in detail what 
combinations are considered derivative works that fall under section 6.  See Lesser GPL, 
supra note 153, §§ 5, 6.  The license grant of section 6 allows one to distribute other software 
under terms of her choice (to a degree), but the library covered by the Lesser GPL must 
remain open source software: 

[Y]ou may also combine or link a “work that uses the Library” with the Library to 
produce a work containing portions of the Library, and distribute that work under 
terms of your choice, provided that the terms permit modification of the work for 
the customer’s own use and reverse engineering for debugging such modifications. 
You must give prominent notice with each copy of the work that the Library is used 
in it and that the Library and its use are covered by this License. . . . 
. . . . 
It may happen that this requirement contradicts the license restrictions of other 
proprietary libraries that do not normally accompany the operating system. Such a 
contradiction means you cannot use both them and the Library together in an 
executable that you distribute. 

Id. § 6.  There are additional requirements to preserve the open source status of the original 
library, and to require certain technical provisions for use of a shared library.  Id.  Also, the 
Lesser GPL includes another safe harbor for distributing new libraries based on the original 
 



120 RUTGERS LAW JOURNAL [Vol. 36:53] 

big-cousin license, the GPL.  In addition, like the practice promulgated by 
Torvalds for the Linux kernel, the Lesser GPL is an alternative to the GPL’s 
rubric of the “whole” for infectious license terms.  Of course, to use this 
alternative, a programmer would have to initially license her project under 
the Lesser GPL. 

The FSF developed the Lesser GPL along with the GPL, but later 
deemphasized the Lesser GPL.172  It did so believing that the Lesser GPL did 
not promote the interests of open source programmers as well as the GPL.  If 
programmers put their best open source software under the GPL, proprietary 
developers would be unable to use it, giving open source programmers a 
competitive advantage.173  The FSF also reasoned that the infectious terms of 
the GPL would give proprietary software an incentive to succumb to the 
GPL license in order to interoperate with best-of-breed open source 
applications.  The FSF reports at least one such occurrence of this.174  The 
incentive to succumb supposes an aggregate effect:  as more very good open 
source software is available under the GPL, it creates a superior platform for 
software development, leading to an upward spiral of superior software and 

                                                                                                               
library (the new library must remain open source software) along with other libraries not 
covered by the Lesser GPL.  Id. § 7.   

172.    See GNU Operating System - Free Software Foundation, GNU Library General 
Public License Version 2 (June 1991), at http://www.gnu.org/copyleft/lgpl.html (last visited 
Dec. 20, 2004) [hereinafter Library GPL] (stating “that the GNU Library General Public 
License has been succeeded by the GNU Lesser General Public License”).  In its preamble, 
the Lesser GPL suggests that the programmer consider using the GPL rather than the 
Lesser GPL:  “think carefully about whether this license or the ordinary General Public 
License is the better strategy to use in any particular case.”  See Lesser GPL, supra note 153, 
preamble. 

173.    See Why-Not-LGPL, supra note 153 (“Proprietary software developers have the 
advantage of money; free software developers need to make advantages for each other.  Using 
the ordinary GPL for a library gives free software developers an advantage over proprietary 
developers: a library that they can use, while proprietary developers cannot use it.”). 

174.    See id.  The “Why-Not-LGPL” document describes in full the attraction it 
envisions for infectious open source software. 

[W]hen a library provides a significant unique capability, like GNU Readline, that’s 
a horse of a different color.  The Readline library implements input editing and 
history for interactive programs, and that’s a facility not generally available 
elsewhere.  Releasing it under the GPL and limiting its use to free programs gives 
our community a real boost.  At least one application program is free software today 
specifically because that was necessary for using Readline. 

Id.  



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 121 

 

increasing open source use.175  On the other hand, the Lesser GPL 
acknowledges that in some cases the less infectious license is the better 
choice.176 

One such case is the application of the Lesser GPL to a key library used 
in GNU/Linux.  Recall that Torvalds’ designated that user programs making 
                                                                                                               

175.    See id.  The “Why-Not-LGPL” document describes the aggregating effect as 
follows: 

If we amass a collection of powerful GPL-covered libraries that have no 
parallel available to proprietary software, they will provide a range of useful 
modules to serve as building blocks in new free programs.  This will be a significant 
advantage for further free software development, and some projects will decide to 
make software free in order to use these libraries.  University projects can easily be 
influenced; nowadays, as companies begin to consider making software free, even 
some commercial projects can be influenced in this way. 

Proprietary software developers, seeking to deny the free competition an 
important advantage, will try to convince authors not to contribute libraries to the 
GPL-covered collection.  For example, they may appeal to the ego, promising “more 
users for this library” if we let them use the code in proprietary software products.  
Popularity is tempting, and it is easy for a library developer to rationalize the idea 
that boosting the popularity of that one library is what the community needs above 
all. 

But we should not listen to these temptations, because we can achieve much 
more if we stand together.  We free software developers should support one another. 
By releasing libraries that are limited to free software only, we can help each other’s 
free software packages outdo the proprietary alternatives.  The whole free software 
movement will have more popularity, because free software as a whole will stack up 
better against the competition. 

Since the name “Library GPL” conveys the wrong idea about this question, we 
are planning to change the name to “Lesser GPL.” 

Id. (noting that the name was in fact later changed from Library GPL to Lesser GPL). 
176.    See Lesser GPL, supra note 153, preamble.  The reasons that the FSF sees as 

legitimate for using the Lesser GPL include the following: 
For example, on rare occasions, there may be a special need to encourage the 

widest possible use of a certain library, so that it becomes a de-facto standard.  To 
achieve this, non-free programs must be allowed to use the library.  A more frequent 
case is that a free library does the same job as widely used non-free libraries.  In this 
case, there is little to gain by limiting the free library to free software only, so we 
use the Lesser General Public License. 

In other cases, permission to use a particular library in non-free programs 
enables a greater number of people to use a large body of free software.  For 
example, permission to use the GNU C Library in non-free programs enables many 
more people to use the whole GNU operating system, as well as its variant, the 
GNU/Linux operating system. 

Id. 



122 RUTGERS LAW JOURNAL [Vol. 36:53] 

normal system calls to the kernel did not invoke the rubric of the GPL’s 
infectious “whole.”  The FSF did something similar that increased the 
compatibility of GNU/Linux with proprietary software.  It released library 
software under the Lesser GPL, acknowledging that doing so “enables many 
more people to use . . . the GNU/Linux operating system.”177  The library 
provides a set of standard functions available in a popular programming 
language.  Thus, by cutting back on the GPL’s infectious terms, the 
Lesser GPL allows programmers to combine open source software organized 
in a specialized way (as a library) with non-open-source code.  This 
acknowledges the value in compatibility and interoperability, particularly for 
ubiquitous or standardized interfaces and interchange capabilities. 

Besides its significance as a license in its own right, the Lesser GPL is 
important for its commentary about the GPL.  Given the lack of specificity 
about what falls into the GPL’s infectious “whole,” any statements by its 
authors on the matter are valuable.  Perhaps surprisingly, the Lesser GPL, 
quoted below, is more specific about what falls into the “whole” than the 
GPL. 

When a program is linked with a library, whether statically or using a 
shared library, the combination of the two is legally speaking a combined 
work, a derivative of the original library.  The ordinary General Public 
License therefore permits such linking only if the entire combination fits its 
criteria of freedom.  The Lesser General Public License permits more lax 
criteria for linking other code with the library.178 

Thus, in terms of my framework, the Lesser GPL says that the GPL’s 
infectious “whole” is intended to capture software intermixed in both the 
development and runtime environment.179 

                                                                                                               
177.    Id.  
178.    Id. 
179.    Interestingly, the earlier version, the Library GPL, put the derivative works issue 

in slightly different terms: 
The reason we have a separate public license for some libraries is that they blur 

the distinction we usually make between modifying or adding to a program and 
simply using it.  Linking a program with a library, without changing the library, is in 
some sense simply using the library, and is analogous to running a utility program or 
application program.  However, in a textual and legal sense, the linked executable is 
a combined work, a derivative of the original library, and the ordinary General 
Public License treats it as such. 

Because of this blurred distinction, using the ordinary General Public License 
for libraries did not effectively promote software sharing, because most developers 

 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 123 

 

By reflecting on the GPL, the Lesser GPL provides a second example to 
understand the envisioned scope for the GPL’s infectious terms.  The 
Lesser GPL states that the GPL considers both static and dynamic links as 
derivative works of the GPL protected software.  In that case, the rubric of 
the “whole” requires the other software to succumb to the GPL terms.  If 
distributed in an intermixed form, the other software must go forward in that 
combination as open source software. 

This example, along with the earlier example recounting Torvalds’ 
decision about normal system calls, adds niche certainty to the otherwise 
indeterminate rubric established by the GPL.  To see this contribution against 
the framework developed in Part III, the table below maps the two examples 
discussed in this part against that framework. 

                                                                                                               
did not use the libraries.  We concluded that weaker conditions might promote 
sharing better. 

See Library GPL, supra note 172, preamble (emphasis added). 



124 RUTGERS LAW JOURNAL [Vol. 36:53] 

Table 2 – Certainty Enhancing Measures within the Infectious Framework 
Category Modify or 

Extend 
Intermingle or 
Intermix 

Couple or 
Integrate 

Mere 
Aggregation 

Description Software in a 
single container 
or file, 
modified; or 
extended by 
copying code 
from external 
sources 

Software in 
multiple 
containers, 
intended to 
function under the 
control of a single 
process, linked at 
development or 
runtime 

Software in 
multiple 
processes, 
interacting and 
interdependent 
to some degree 

Separate 
software on 
the same 
media 

GPL Rubric of the “whole”  
Torvalds 
practice 
under the 
GPL 

Likely infected 
by the “whole” 

User programs not 
infected by the 
“whole” 
But, for loadable 
kernel modules, it 
depends on 
technical details180 

Likely not 
infected by the 
“whole” 

Not infected 
by the 
“whole” 

Lesser GPL Likely not 
infected by the 
“whole” 

Not infected by the 
“whole” 

same same 

 
This mapping shows only a few examples.  There are many more 

technological options to modify, extend, intermix, or couple software than 
the licenses and practices thus far discussed.  This leaves uncertainty about 
this continuum and the GPL’s infectious terms for two primary reasons.  
First, the scope of the derivative work right in copyright is underdeveloped 
along this continuum.  Besides its notorious status as the most uncertain of 
copyright’s entitlements, case law applicable to this technological framework 
is sparse, or outdated by the pace of advancing technology.181  Second, even 

                                                                                                               
180.    The issues arising from intermixing loadable kernel modules, or LKMs, with or 

within the GPL protected Linux kernel are discussed supra note 161.  Some LKMs are 
distributed under a proprietary license, without the source code.  Thus, their intermixing with 
the Linux kernel may violate the GPL’s infectious terms. 

181.    Advancing software development techniques that outpace case law on copyright’s 
derivative work right include programming with “objects.”  This is also called object-oriented 
programming.  Certain modern programming languages are “object oriented” because the 
language models the real world using software “objects.”  The key point for purposes of this 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 125 

 

with the examples discussed in Part IV, the GPL leaves many questions 
unanswered about how far it might reach along this framework. 

The next part analyzes these two sources of uncertainty for incentives in 
open source software development.  The analysis questions the efficacy of 
the GPL’s infectious terms, or any set of infectious terms so broadly 
specified, to systemically harvest existing and future-developed software into 
the open source fold, and to support the other key tenets of open source 
software:  collaborative community development, anti-privatization, and 
source code availability.  It is not my intent to pass judgment on the larger 
goal, promoting development of open source software, but rather to question 
whether an infectious implementation will achieve such a goal given that 
infectious uncertainty chills other important objectives, including 
interoperability and compatibility. 

V.  THE INCENTIVES EFFICACY OF INFECTIOUS LICENSE TERMS 

An infectious open source license operates along the technological 
framework presented in Part III, endowing its software with a dubitable zone 
of infectious risk for other software.  This is intended to transform the other 
software into free and open source software and protect the key tenets of the 
open source approach:  source code availability and royalty-free software.  
The GPL expresses the zone’s outer boundary by its rubric of the entire 
“whole.”182  The power behind the zone is the threat of copyright 
infringement for reproduction and derivative work rights violations.  The 
analysis below assesses the efficacy of this zone in order to determine its 
incentive effects on free or open source software, and on proprietary 
software. 

Ironically, important precursors to GNU/Linux’s growth quarantined the 
zone of infection in a few specific ways, even though most of this flagship 
open source operating system employs the GPL, thus disseminating a 
potentially wide zone of infection.  First, early in the Linux kernel project, 
Linus Torvalds signaled that he did not consider user programs making 

                                                                                                               
Article is that objects intermix and couple with the programs that use them in analogous but 
different ways from what is described above in the text.  Thus, the increased use of 
object-oriented programming further increases the uncertain reach of copyright’s derivative 
work right for software works. 

182.    GPL, supra note 8, § 2, ¶ 1. 



126 RUTGERS LAW JOURNAL [Vol. 36:53] 

normal system calls to fall in the zone.183  Second, the GNU project put 
important software libraries for a popular programming language under the 
Lesser GPL,184 a license written by the very same organization that 
promulgated the GPL.  The Lesser GPL allows proprietary software a degree 
of meaningful intermixing with the open source software under its purview.  
These two precursors to the impressive growth and popularity of GNU/Linux 
suggest a rethinking of approaches that put a broad, or uncertain, scope for 
infectious terms first and foremost.  Considerations of interoperability and 
compatibility should carry equal or greater weight, especially for open source 
software competing in a platform space185 where network effects resulting 
from compatibility are important to market penetration and growth.186 

                                                                                                               
183.    See supra Part IV.A. 
184.    See supra Part IV.B. 
185.    See Douglas Lichtman, Property Rights in Emerging Platform Technologies, 29 J. 

LEGAL STUD. 615, 615 & n.1 (2000) (describing a “platform” as something a consumer can 
purchase “to enhance the value of some number of independently purchased goods,” and 
offering operating systems as an example of a platform technology, while describing 
application software that runs on the platform operating system as “peripherals” to that 
platform). 

186.    It seems that there may be two network effects in play for open source software, 
which could either compete or compliment, depending on the circumstances.  First, using 
GNU/Linux as an example, it becomes more valuable as more users adopt it.  Second, 
however, it may become more valuable as it interconnects with more systems and software.  
See id. at 616-18 (describing how platform technologies, such as operating systems, are more 
valuable to users as they support more peripherals, which include applications).  These two 
effects are related, and, typically, one might expect them both to contribute to the value of a 
technology. 

But in the context of open source software, expansive infectious terms might be 
understood as an attempt to play them against each other.  Infectious terms inhibit 
interconnectivity with non-open source software while the rest of the license maximizes it for 
other open source software.  Given the cost advantages (and purported quality advantages) of 
open source software (although its alternative cost is not zero – some believe it has higher 
operating cost than proprietary software), this could have the effect of accelerating the time to 
a tipping point at which GNU/Linux becomes the dominant operating system.  By minimizing 
interconnectivity with proprietary systems and software, and offering sufficient attractions as 
a platform technology for any open source applications, systems, and software, the first 
network effect eventually swamps the second. 

Whether playing the two effects against each other with infectious terms produces this 
result depends on a much more in-depth analysis than I can proffer here.  This suggested 
explanation comports with some of the FSF’s reasons for infectious terms:  it wants to keep 
the benefits of high quality open source code sequestered among the open source 
programmers so they can create advantages for each other.  See supra notes 172-76 and 
accompanying text. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 127 

 

To express my analysis, this part constructs a legal framework over the 
technological framework that measures the scope of the GPL’s infectious 
licensing terms.  My purpose is to show, by creating an example from the 
GPL’s rubric of the “whole,” that several alternative legal views of the 
infectious scope issue reduce to approximately the same inquiry for my 
purposes.  Most infectious licenses of concern to my analysis will have some 
word, or short phrase, that harkens to copyright’s derivative work right.187  
In the GPL, this term is the “whole.”  The question then becomes:  what is 
the copyright or contract/permission effect of this term when one complies 
with all open source license conditions except the infectious terms’ operation 
on the “other” proprietary software? 

The first step to answer this question is to narrow the fact setting of my 
inquiry.  To isolate and focus on infectious terms, the next section describes 
scenarios where programmers combine software such that the main issue of 
GPL compliance is the infectious terms. 

A.  Isolating the Infectious Terms 

Two examples provide the setting to illustrate isolation of the GPL’s 
infectious terms. 

As a first example, recall the earlier discussion of a sixty-page computer 
program being analogous to this Article.188  Suppose someone extensively 
rewrote this Article, keeping to some degree the original structure, sequence, 
and organization, but leaving no paragraph untouched.  If the modifications 
were instead to a computer program, such revisions suggest a non-literal 
infringement analysis for copyright’s reproduction right.189  Now assume 
that the program is open source software.  The GPL will allow such 
revisions, but they may become part of the “whole.” 

If the extensive modifications in part arrange the original code for 
interaction with other proprietary software, then the resulting work, 
intermixed at development or runtime, might fall in the infectious zone.  If 
so, however, note that the modifying developer could theoretically comply 

                                                                                                               
187.    The licenses of concern have broad, uncertain language and scope.  A license with 

a well-drafted, detailed phrase delineating infectious terms will probably be more certain, and 
of less concern. 

188.    See supra notes 129-33 and accompanying text. 
189.    See Computer Assocs. Int’l v. Altai, Inc., 982 F.2d 693, 706-11 (2d Cir. 1992) 

(applying what would later become the leading test for analysis of non-literal copyright 
infringement of the structure, sequence, and organization of computer software). 



128 RUTGERS LAW JOURNAL [Vol. 36:53] 

with many, if not all, of the other open source conditions.  She could provide 
the modified source code for the open source part of the resulting work, yet 
withhold source code for the proprietary part.  She could charge royalties 
only for the proprietary part.190  The area carrying the greatest risk of 
noncompliance is the infectious terms.  And under some judicial analysis of 
the derivative work right, the modifications in this example likely run afoul 
of that right.191 

Figure 4, below, styled from the earlier illustrations of intermixed 
software, shows this first example of a highly modified sixty-page program, 
with the modifications intended to fit into a proprietary program. 
Figure 4 – Modify the Original Open Source to Intermix with Other Software 
 Modify to intermix Key 

 

                                                                                                               
190.    The proposition that a distributor could charge royalties only for the proprietary 

part assumes that there is some mechanism to counter the user/customer’s limited ability to 
disaggregate the charged price among the proprietary and open source components, and 
among other complimentary services such as support, warranty, and indemnification.  This 
mechanism is market entry by other distributors if one distributor begins charging for the open 
source component.  For a more detailed discussion of these points, see infra Parts V.A.1, 
V.A.2. 

191.    See Dun & Bradstreet Software Servs. v. Grace Consulting, Inc., 307 F.3d 197, 
209-11, 214-15 (3d Cir. 2002) (holding that defendant’s use of “Copy and Call” commands to 
access and run plaintiff’s code from defendant’s program created a derivative work, and 
declining to follow the Altai case’s application of the scenes a faire doctrine, which for 
computer programs includes emphasis on interoperability and external factors influencing the 
code – code written in response to these factors is likely not copyrightable expression); cf. 
Mirage Editions, Inc. v. Albuquerque A.R.T. Co., 856 F.2d 1341, 1342-44 (9th Cir. 1988) 
(holding, in a non-software context, that the defendant prepared a derivative work by 
removing individual images from an art book and mounting them on ceramic tiles). 

D
ev

el
op

m
en

t E
nv

iro
nm

en
t 

 

Original open source 
code: 

___ 
Modified open source 
code: 

 
Proprietary code: 

 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 129 

 

A contrasting example is where the open source software is originally 
created to integrate with other software.  Perhaps it has interfaces, access 
points, and data exchange mechanisms whereby it can interact with other 
software without revising the original code.  In this case, the two might be 
intermixed in either the development or runtime environment.  This again 
raises the question of whether the resulting program, when executing as a 
process under the operating system, falls in the infectious zone.  As in the 
first example, one could supply the source code for the open source portion, 
and price the proprietary portion to reflect only its contributed value.  Again, 
the infectious terms present the greatest risk of non-compliance.  This 
depends, in the GPL’s case, on the reach of the “whole.” 

The second example is styled from Progress Software Corp. v. 
MySQL AB.192  This case involved GPL protected software.  A federal 
district court denied MySQL’s request for a preliminary injunction based on 
its allegations that Progress Software distributed MySQL’s software in 
violation of the GPL.193  MySQL, however, obtained a preliminary 
injunction on trademark grounds.194  The parties agreed to collaborate to 
launch MySQL’s database software under the GPL.  The collaboration, 
however, went sour,195 in part because Progress Software’s subsidiary 
allegedly distributed MySQL’s GPL covered software in a way that violated 
the GPL’s infectious terms.196 

                                                                                                               
192.    Progress Software Corp. v. MySQL AB, 195 F. Supp. 2d 328 (D. Mass. 2002). 
193.    Id. at 329. 
194.    Id. 
195.    See Henry W. Jones, III, How a Poor Contract Sunk an Open-Source Deal, 

LINUX J., Aug. 1, 2002 (noting that, for a time, many described the case as the “first litigation 
testing the validity and enforceability of the General Public License,” attributing the parties’ 
dispute to a poorly implemented collaboration agreement, and noting that the “judge found the 
GPL issue too uncertain to adjudicate in [the] litigation’s early, [preliminary injunction] 
phase”), available at http://www.linuxjournal.com/article.php?sid=6025 (last visited Dec. 20, 
2004).  

196.    See Counterclaim at 5, Progress Software Corp. (No. 01-CV-11031) (alleging that 
Progress Software, through its wholly-owned subsidiary NuSphere, violated the GPL by 
“selling derivative works based on the MySQL Program without making the underlying 
source code available”); cf. Declaration of Eben Moglen in Support of Defendant’s Motion for 
a Preliminary Injunction on its Counterclaims at 11, Progress Software Corp. (No. 
01-CV-11031) (arguing that “Progress Software Corp. lost the right to distribute MySQL 
when it distributed NuSphere MySQL Advantage in a fashion that violated GPL”) [hereinafter 
Declaration of Eben Moglen], available at http://www.gnu.org/press/mysql-affidavit.pdf (last 
visited Dec. 20, 2004).  



130 RUTGERS LAW JOURNAL [Vol. 36:53] 

The MySQL product is described as a “database engine,” designed with 
a capability to incorporate, recognize, and use a number of “storage 
modules.”  The storage module capability allows MySQL users to choose 
among storage modules.  This enables users to select different storage 
modules for different database processing applications.197  Progress Software 
intermixed in the development environment the MySQL software with its 
own non-GPL software.  It statically linked the two programs.  It supplied 
the MySQL source code, but initially it did not supply the source for its own 
software.  In a subsequent version it supplied all of the source code, 
including that for its software.198 

Figure 5, below, styled from the earlier illustrations of intermixed 
software, shows the Progress Software inspired example of an open source 
program with interfaces, access points and other features designed to 
intermingle and intermix with other software. 
Figure 5 – Open Source Software Ready to Intermix with Other Software 
 Ready to intermix Key 

 
The Progress Software case is significant even though the only reported 

court opinion involved a preliminary injunction.  First, the court was not 
convinced that there was a violation of the GPL’s infectious terms, which it 
related to copyright’s derivative work right.199  Second, the issue was 

                                                                                                               
197.    See Declaration of Eben Moglen, supra note 196, at 7-11 (describing the function 

of the MySQL software and explaining how Progress Software violated the terms of the GPL).  
Eben Moglen is a Professor of Law at Columbia University Law School and has served as 
General Counsel of the Free Software Foundation since 1994.  Id. at 1-2. 

198.    Id. at 9-11. 
199.    Progress Software Corp., 195 F. Supp. 2d at 329.  The court expressed its analysis 

of the derivative work issue as follows, where the “Gemini program” is the Progress Software 
“storage module” software: 

 

E
ith

er
 E

nv
iro

nm
en

t 

 

Original open source 
code: 
___ 
Proprietary code: 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 131 

 

potentially moot because Progress Software supplied the source code in a 
subsequent version. 

This Article’s Progress Software inspired example discussed above 
isolates the infectious terms more than the first example of an extensively 
modified sixty-page program.  The resulting “whole” has a proprietary 
software component, but the rest of the software is unmodified open source 
software.  In Progress Software, the open source database engine code was 
designed to accommodate multiple storage modules.  The case illustrates 
situations where infectious terms might be most disruptive to 
interoperability, when the open source software is built to intermix or couple 
with other software. 

In this arrangement, there is an argument that the rest of the open source 
conditions are satisfied, depending on the royalty rates for use of the 
software:  the source code for the open source part is available; users can 
modify and redistribute the open source part; and savvy users can still use the 
database engine with other storage modules.200  The issue of license fees, 
however, remains. 

1.  Upfront Fees for Intermixed Software and Open Source Software 

Assume that Progress Software charged a license fee or royalty rate for 
the combined database engine and proprietary storage module.  This raises 
two issues for GPL compliance.  First, the GPL allows redistributors to 
“charge a fee for the physical act of transferring a copy.”201  Second, it 
prohibits royalties of the type charged by proprietary software.202 
                                                                                                               

With respect to the General Public License (‘‘GPL’’), MYSQL has not 
demonstrated a substantial likelihood of success on the merits or irreparable harm.  
Affidavits submitted by the parties’ experts raise a factual dispute concerning 
whether the Gemini program is a derivative or an independent and separate work 
under GPL ¶ 2.  After hearing, MySQL seems to have the better argument here, but 
the matter is one of fair dispute.  Moreover, I am not persuaded based on this record 
that the release of the Gemini source code in July 2001 didn’t cure the breach. 

Id.  
200.    A savvy user who can combine the proprietary storage modules and the open 

source database engine raises the question of indirect liability for the distributor.  See infra 
note 204. 

201.    GPL, supra note 8, § 1.  The GPL also states “you may at your option offer 
warranty protection in exchange for a fee.”  Id.  

202.    See, e.g., id. § 2(b) (“You must cause any work that you distribute or publish, that 
in whole or in part contains or is derived from the Program or any part thereof, to be licensed 
as a whole at no charge to all third parties under the terms of this License.”).  But see 
 



132 RUTGERS LAW JOURNAL [Vol. 36:53] 

Consider two hypothetical scenarios.  First, Progress Software charges 
an upfront fee.203  It internally allocates that fee partly to the distribution fee 
allowed by the GPL.  The rest is an upfront royalty for the proprietary 
storage module.  From the purchaser’s perspective, this creates ambiguity as 
to what she is paying for.  If the proprietary storage module is part of the 
GPL’s “whole,” then the royalty is a GPL violation. 

Consider an alternative to this first hypothetical.  Progress Software 
distributes a CD containing the open source database program, with source 
code, and charges only for the physical transfer.  On the same CD it includes 
its proprietary storage module, without source code, but with linkable object 
code.  However, it does not include a linked executable file intermixing the 
code in the development environment.  Do the GPL’s safe harbors apply?  
Are the two works merely aggregated on the CD?  Is the proprietary storage 
module an “identifiably independent and separate work”?  Assuming that the 
user could readily intermix the two programs, this raises the specter of 
indirect liability.204 
                                                                                                               
Gomulkiewicz, supra note 23, at 86-88 (hypothesizing that the GPL’s anti-royalty provisions 
might be advisory, in which case their legal effect would be of no consequence, but noting 
that if the provision “is a [contractual] covenant or [copyright] license condition, a licensee 
must understand what fees the GPL allows”). 

203.    An upfront fee is the typical license approach for “off-the-shelf” software 
distributed through retail.  The required payment is styled as a license royalty, paid up at the 
time of initial acquisition.  This tends to make the transaction look like a purchase, raising the 
oft encountered issue of whether a UCC sale has occurred, or whether, instead, the contract is 
merely for services.  See 2 DAVID M. EPSTEIN, ECKSTROM’S LICENSING IN FOREIGN AND 
DOMESTIC OPERATIONS §§ 12.50-53 (2003) (discussing the applicability of the UCC to 
software transactions and courts’ difficulties in determining whether software should be 
considered a good or a service); see also Raymond T. Nimmer et al., License Contracts Under 
Article 2 of the Uniform Commercial Code:  A Proposal, 19 RUTGERS COMPUTER & TECH. L.J. 
281, 310 (1993) (noting that “custom development software contracts frequently engender 
litigation about whether they are contracts for goods or for services”); Andrew Rodau, 
Computer Software:  Does Article 2 of the Uniform Commercial Code Apply?, 35 EMORY L.J. 
853, 918-19 (1986) (discussing the drawbacks and advantages of applying the UCC to all 
software licensing agreements). 

Many other non-retail applications in the “business-to-business” software markets also 
use an up-front license payment.  In addition, these transactions often also include ongoing 
payments for support, rights to future versions, and rights to fixes in the current version of the 
software. 

204.    Indirect copyright infringement liability comes in two forms:  contributory and 
vicarious.  See Douglas Lichtman & William Landes, Indirect Liability for Copyright 
Infringement: An Economic Perspective, 16 HARV. J.L. & TECH. 395, 396 (2003) (noting that 
although the Copyright Act of 1976 does not “explicitly recognize the possibility of indirect 
liability . . . courts have held third parties liable for copyright infringement under two long-
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 133 

 

In this alternative hypothetical, it seems that Progress Software could 
charge a royalty without GPL risk for the proprietary module if this 
distribution falls into a safe harbor.  What might upset this determination, 
however, is the possibility of indirect liability.205  Nevertheless, this example 
underscores that, in some cases, programs capable of intermixing might be 
distributed together. 

Next, assume there is an upfront charge for the CD covering:  (i) a 
physical transfer of the open source part; and (ii) a paid-up royalty for the 
proprietary program merely aggregated with the open source code.  This 
charge has the same ambiguity as the original hypothetical.  The 
customer/user cannot disaggregate the cost factors in the price.206  As a 

                                                                                                               
standing common law doctrines: contributory infringement and vicarious liability”).  For a 
general introduction to these two doctrines, see MARSHALL A. LEAFFER, UNDERSTANDING 
COPYRIGHT LAW 399–402 (3d ed. 1999). 

If Progress Software included instructions or a script on the CD that showed how to link, 
or did link, the two sets of code, then its risk for indirect liability increases.  Linking the two 
programs produces an executable software work that may fall under the GPL’s “whole.”  The 
open source database program’s source code can be linked with the proprietary object code.  If 
a programmer/user so links the programs and redistributes the resulting program (with the 
source code available only for the database part), this constitutes an act of direct infringement 
if the infectious “whole” applies.  The direct act of infringement, predicated in this example 
on infectious terms, raises the possibility of indirect liability running to the CD’s distributor.  
The distributor placed components on the CD that a programmer/user might combine to create 
a work that violates the infectious terms, eliminating the permission that shields against 
copyright infringement liability.  Whether indirect liability will attach depends on other 
factors.  In light of these other factors, one would need to evaluate the elements of each type 
of indirect liability:  contributory and vicarious infringement.  See NIMMER, supra note 28, 
§ 12.04[A][1]-[2], at 12.72 & 12.79 (noting that for vicarious liability to attach, the defendant 
must “possess the right and ability to supervise the infringing conduct” and have a financial 
interest in the exploitation of the materials, whereas contributory liability comes in “two types 
-- personal conduct that forms part of or furthers the infringement and contribution of 
machinery or goods that provide the means to infringe”). 

205.    See McGowan, Legal Aspects, supra note 7, at 24-25 (discussing the possibility 
that the author of a program distributed under the GPL may suffer contributory liability for 
copyright infringement based on the actions of a user combining the open source code with 
proprietary code contrary to the infectious terms). 

206.    The customer’s ability to disaggregate the charge will depend on her familiarity 
with pricing for comparable alternatives of each component.  If the same open source software 
is available for a distribution fee from other distributors, and comparable proprietary software 
products are available with published prices, this might allow for price comparison of the 
package.  This would also allow the customer to estimate the disaggregated component 
charges. 



134 RUTGERS LAW JOURNAL [Vol. 36:53] 

result, the CD distributor could in fact be charging for some of the value of 
the open source component under the guise of the royalty for the proprietary 
part.207 

To an extent, a similar ambiguity has always existed for open source 
software distributors.  Nothing requires them to disaggregate the fees they 
charge for “the physical act of transferring a copy.”  A distributor can charge 
the transfer fee in conjunction with warranty, support, and other services for 
a single upfront price.  The more items in the mix, the greater the possibility 
of charging for some of the value of the open source software itself.  The 
opportunity to do so is greatest at the point of original sale when the software 
media is transferred. 

The primary limit to such overpricing is the relative ease of competitive 
entry.  The main production input, the software itself, is freely available to 
any distributor.  Thus, distributors work to differentiate themselves in a 
variety of ways, including traditional brand-building.208  Differentiation and 
branding might allow a distributor to resist pricing pressure caused by 
market-entrant distributors.  Of course, some open source software users will 
bypass distributors entirely and simply download the programs from the 

                                                                                                               
207.    A number of market and economic factors will influence whether the proprietary 

part would bear an artificially higher price, assuming a purchaser is able to disaggregate 
component prices.  First, if the proprietary component is in a highly differentiated product 
category, it will have greater resistance to pricing pressure.  Second, valuation of intangibles is 
generally difficult and specifically obtuse for software components.  This means the 
purchaser/user is unlikely to have precise information about the price she should pay.  Third, 
there is a limit on the price the distributor can charge.  Charging for the value of the open 
source part in the guise of a royalty for the proprietary component invites competition because 
the open source part is a cost-free input, disregarding opportunity costs.  Thus, if a distributor 
overly inflates the overall charge, other suppliers have an incentive to produce a competitive 
software component that works with the open source software. 

208.    For example, Red Hat, a traditional distributor of Linux products, has recently 
redirected its focus to the commercial arena.  See Red Hat, Inc., Red Hat Enterprise Linux 
Frequently Asked Questions, at http://www.redhat.com/software/rhel/faq (last visited Dec. 20, 
2004).  Its new line of products, Red Hat Enterprise Linux (RHEL), is available under three 
different pricing levels, and is sold on an annual subscription basis.  Id.  Although the source 
code remains available under the GPL, a subscription must be purchased for every system 
RHEL is installed on.  Id.  The subscription includes access to RHEL binaries, upgrades, and 
support.  Id.  During 2004, Red Hat discontinued maintenance of its Red Hat Linux consumer 
line of products.  Robert McMillan, Red Hat Users Balk at Enterprise Linux Licensing, at 
http://www.computerweekly.com/Article126419.htm (Nov. 11, 2003).  Some Red Hat 
consumers are unhappy with the changes and claim that the new subscription agreements are 
“in conflict with the spirit of Linux’s GNU General Public License.”  Id. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 135 

 

internet.209  However, the distributor market is an important aspect of the 
delivery system for open source software.  This is particularly true for 
corporate adapters, who seek to reduce the risk perceived with open source 
software.210 

This subsection has reviewed upfront fees.  The next subsection reviews 
the contrasting situation:  proprietary royalties payable on an ongoing basis. 

2. Ongoing Service Fees for Intermixed Software and Open Source 
Software 

Proprietary software vendors often license their products with an 
ongoing royalty structure that charges for use over time.  Sometimes other 
services are included in the regular charges, such as support, rights to new 
versions or fixes, distribution of new versions of the software, and 
documentation.  These ongoing charges are characteristic of “enterprise” 
software.211  These applications are unlikely to appear in a box at the local 
computer store.  They are typically licensed in negotiated transactions and 
may involve tens to hundreds of thousands of dollars in software license fees, 
both upfront and ongoing. 

Ongoing fees are harder to hide as royalty charges.  Thus, a distributor 
who intermixes open source and proprietary software, yet who charges 
ongoing royalty fees, is more visible.  The ongoing fees, if identified as 
license fees for use, will violate the open source license if the intermixed 
proprietary software falls into the infectious terms of the open source 
software.  In the hypothetical based on Progress Software, if 
Progress Software charges annual licensing fees, it would violate the GPL, 

                                                                                                               
209.    See FINK, supra note 6, at 4 (explaining that Linux may be purchased from a 

distributor or downloaded from the internet for free, and displaying a third-party study 
showing that approximately one-third to one-half of the Linux copies in use were downloaded 
for free). 

210.    See infra Part V.C.2 (discussing the risks associated with infectious terms). 
211.    Enterprise software is used in large organizations for critical operations.  Thus, for 

example, to a national bank, its enterprise software includes the applications that keep account 
balances current for its millions of customers.  See Microsoft Corp., Help and Support 
Glossary, at http://support.microsoft.com/default.aspx?scid=%2fsupport%2fglossary%2fE.asp 
(last visited Dec. 20, 2004) (defining “enterprise computing” as follows:  “In a large enterprise 
such as a corporation, the use of computers in a network or series of interconnected networks 
that generally encompass a variety of different platforms, operating systems, protocols, and 
network architectures.”). 



136 RUTGERS LAW JOURNAL [Vol. 36:53] 

unless the combined program, intermixed in the development environment, 
did not fall into the GPL’s infectious “whole.” 

As in the hypothetical with upfront fees, Progress Software could 
distribute each component separately, perhaps on separate media or as a 
“mere aggregation” on the same media.  This again raises the possibility of 
indirect copyright infringement liability.  However, there must be a direct act 
of infringement.  Such may not occur if the user only intermixes the two 
components and merely uses the result without distributing it.  The GPL’s 
main open source conditions primarily attach upon redistribution of modified 
or verbatim open source software.  A user who only receives, links, and uses 
the two programs as a resulting work will likely not violate the GPL’s 
conditions.  Distribution or publication would, but mere use in a confined 
environment does not seem to be a literal problem, even if it is perhaps 
against the spirit and intent of the GPL. 

This section began by discussing two examples of intermixed open 
source code:  (i) modify to intermix212 and (ii) ready to intermix.213  The first 
example described an extensively modified sixty-page program.  The second 
example described separate programs, at least one of which was originally 
programmed to interoperate with other code, and both of which were 
eventually fitted together. 

Both examples, “modify to intermix” and “ready to intermix,” illustrate 
scenarios where the infectious terms are isolated.  When proprietary software 
is intermixed with open source software, but the source code is provided for 
the modified or unmodified open source component, the primary violation of 
the GPL may be that the infectious terms are not given effect.  The main 
challenge to this contention, that the infectious terms can be isolated, is the 
condition that redistributors do not charge royalties for ongoing use.  If such 
a fee is levied, it may be hard to show that there is no royalty charge.  
Royalties may not disaggregate among the open source and non-open source 
components.  Comparable royalty rates for the proprietary component may 
be sparse, and none will exist for the open source part if it has no competing 
proprietary products. 

A different type of disaggregation, however, is already a potential 
problem when a distributor deals only in open source software.  Distributors 
may charge for ongoing support and other services, including the service of 
continually sending updates to the open source software.  Thus, the royalty 

                                                                                                               
212.    See supra Part V.A, Figure 4. 
213.    See supra Part V.A, Figure 5. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 137 

 

rate issue is difficult to assess with or without intermixing proprietary code, 
but such intermixing moderately complicates the assessment.  This weakens 
the case somewhat for isolating the infectious terms.  On the other hand, the 
disaggregation problems that exist without intermixing show that infectious 
terms do not solve disaggregation issues. 

To show how these considerations impact the efficacy of infectious 
terms, the next section narrows the legal question in order to apply the 
resulting issue to the continuum of ways to modify, extend, intermix and 
couple software.  The section thereafter ascertains the effects of this 
application. 

B.  Efficacy Model 

From a copyright perspective, an open source license expresses a 
generally applicable conditional permission, so the focus is whether the 
conditions are met.214  For the GPL, this requires interpreting its rubric of the 
“whole.”  The power to impose this infectious condition extends at least as 
far as the derivative work right, but the condition need not reach that far.  It 
could retreat from the derivative work standard. 

From a contract perspective, an open source license may express an 
agreement between the licensor and licensee.  As a contract, the promises 
relevant to my analysis are the open source conditions.  For the GPL, viewed 
as a contract, the infectious terms amount to a promise to not intermix, 
couple, or integrate the software with non-GPL software. 

Styling the GPL as a contract, however, may not help with the 
fundamental inquiry:  what is the scope of the GPL’s “whole,” or the scope 
of its safe harbors?  What remains, under either a copyright or contract 
analysis, is the need to deal with expansive language defining the scope of 
the infectious terms.215  The GPL’s “whole” is my example, but my inquiry 

                                                                                                               
214.    McGowan, Legal Implications, supra note 4, at 257 & n.74.  But see Sun 

Microsystems, Inc. v. Microsoft Corp., 188 F.3d 1115, 1122 (9th Cir. 1999) (holding that 
whether Sun could enjoin Microsoft based on a license agreement for Sun’s Java technology 
depended on whether the license provisions in question were “license restrictions or separate 
[contractual] covenants”); Gomulkiewicz, supra note 23, at 87 (“One issue is whether these 
statements about fee charging are additional license conditions, a separate covenant, or merely 
advisory.”). 

215.    Expansive language delineating the scope of infectious terms could either 
explicitly or implicitly refer to copyright’s derivative work standard, or express the scope of 
infection with insufficient linguistic specificity to provide much guidance, as does the GPL’s 
rubric of the “whole.”  Any of these approaches leave a greater degree of uncertainty than my 
 



138 RUTGERS LAW JOURNAL [Vol. 36:53] 

is applicable to any open source license using a broad label that does not help 
to cabin such scope. 

Many distinctions turn on whether the open source license’s conditions 
are enforced or evaluated as conditions limiting permission, as contractual 
promises, or as both.216  These distinctions could arise on a term-by-term 
basis; some provisions of the open source license might be part of the 
conditional permission, but others might not.  The question whether the open 
source license is a contract or not adds to the overall legal uncertainty.  
However, this distinction is ancillary to my main motif:  the scope of 
infectious terms and the uncertainty about their scope.217  There has been 
some attention in the literature to whether the GPL and other open source 
software licenses are valid contracts.218  The answer will often turn on facts  
 

                                                                                                               
analysis herein finds beneficial, especially given the opportunity in the license itself to cabin 
infectious terms or express “safe harbors” from them for important purposes, such as 
interoperability.  See McGowan, Legal Aspects, supra note 7, at 26 (“A rule that one program 
may form a derivative work of another by interacting with it would make it harder for 
developers to write interoperable programs.”). 

216.    Id. at 9-16 (analyzing a number of potential implications arising from styling the 
GPL as a contract). 

217.    I do not mean to say that the contract/copyright question, or the other questions 
about the open source licensing approach, are irrelevant to legal uncertainty.  Rather, my main 
focus is on uncertainty and issues arising from infectious terms.  For example, the 
consequence for remedies is drastic if a term is found to be a contractual covenant versus a 
copyright permission. E.g., Sun Microsystems, Inc., 188 F.3d at 1122; see also Gomulkiewicz, 
supra note 23, at 87.  However, despite the impact of this uncertainty, the type of uncertainty 
arising from broad infectious terms could arise in stylization of the GPL either as contract or 
copyright permission.  Even if a license fails as a contract, the licensor can fall back on 
copyright.  The enforceability of the contract may be more important for licensees who do not 
have copyright as a backstop, unless they are contributors and their programming is 
intertwined in the product.  McGowan, Legal Aspects, supra note 7, at 13-14. 

218.    See Patrick K. Bobko, Linux and General Public Licenses: Can Copyright Keep 
“Open Source” Software Free?, 28 AM. INTELL. PROP. L. ASS’N Q.J. 81, 102-03 (2000) 
(arguing that the GPL would create an enforceable contract under principles flowing from 
“shrinkwrap” license cases); McGowan, Legal Aspects, supra note 7, at 12 (noting that if 
developers properly follow the GPL’s notice requirements, then the GPL resembles a typical 
form contract situation, but also noting that a “developer who released code with a reference 
to the GPL and a link to its terms would not comply with the GPL’s notice requirement, and 
would run a greater risk of formation problems. . . . The link might go dead, for example.”). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 139 

 

and circumstances external to the GPL’s terms, such as whether there is any 
form of explicit or implied assent to the terms.219 

Further complicating the copyright versus contract distinction is that the 
contract view may incorporate copyright concepts.  Viewed as a contract, the 
GPL, or other open source licenses, may refer to copyright’s derivative work 
standard to define the scope of the infectious promise.220  The GPL seems to 
do this, associating in several places its rubric of the “whole” with 
copyright’s derivative work standard.221  Thus, the copyright and contract 
facets of the problem focus on the same place:  language in a written 
instrument that expresses the reach of the infectious terms and the challenge 
of interpreting that language.  Even if the instrument is not a contract, courts 
will likely use contract interpretation principles, as well as principles of 
equity, to construe the meaning. 

If contract doctrine is taken out of the picture, the remaining copyright 
analysis has several facets.  My discussion thus far assumes that the 
derivative work right extends the copyright holder’s power to exclude 
beyond the reproduction right.  Given the overlap between these two rights 
when non-literal infringement of the reproduction right is at issue, this 

                                                                                                               
219.    McGowan, Legal Aspects, supra note 7, at 11-12 (“The GPL does not require a 

user to click through a dialogue box, of course, but there is nothing talismanic about that 
method.  It is just one way of making sure that users have notice of license terms.”). 

220.    Contract language referring to copyright’s derivative work standard raises the 
question of preemption.  See Mark A. Lemley, Beyond Preemption: The Law and Policy of 
Intellectual Property Licensing, 87 CAL. L. REV. 111, 137-44 (1999) (describing that there are 
“two basic sets of copyright preemption doctrines. One is based on an express statutory 
provision partially preempting the field; the other is based on express and implied conflicts 
preemption.”).  The preemption possibility is another factor of uncertainty in the contract 
versus copyright analysis, but again, it is ancillary to my focus. 

For open source licenses, preemption would be one of a number of ways to argue that a 
contract, or a provision thereof, is not in effect.  If there is no contract in effect, there are no 
contractual promises to potentially override the licensee’s ability to rely on fair use.  See 
Bowers v. Baystate Techs., Inc., 320 F.3d 1317, 1323-27 (Fed. Cir. 2003) (holding that a 
license agreement was not preempted, and thus the anti-reverse-engineering clause in the 
contract overrode any fair use right of the licensee to reverse engineer the software).  While 
fair use is part of the analysis, how it applies to infringement via violation of infectious terms 
is another difficult question.  See McGowan, Legal Implications, supra note 4, at 287-89, 303 
(discussing how fair use might impact an open source license, and arguing that “the 
open-source model of production is itself a fact that should be considered”).  Furthermore, 
there is the additional uncertainty of the fair use standard itself, adding to the significant ex 
ante uncertainty of broad infectious terms. 

221.    GPL, supra note 8, §§ 0, 2, 5, 10. 



140 RUTGERS LAW JOURNAL [Vol. 36:53] 

further clouds the discussion.222  Beyond these uncertainties, there are 
doctrinal differences from geography.  Different federal appellate circuits 
offer slightly differing standards for either right.223 

My aim is not to resolve every point of uncertainty tagged above.  While 
perhaps one could quibble with the importance of some of these uncertainties 
by themselves, my argument is that in aggregate they present uncertainty to a 
degree that influences open source software development by influencing the 
impact of licenses such as the GPL.  Much of the uncertainty exists 
regardless of infectious terms, but such terms significantly enhance the 
ambiguity.224 

Figure 6, below, brings together these considerations.  The figure is an 
abstraction of two overlapping continuums.  First is the technological 
framework for infectious ambit, ranging from modifying or extending 
software, to intermixing it, to coupling and integrating it with other software.  
The second is legal; copyright’s reproduction and derivative work rights.  
There are no hard boundaries for either continuum, so the abstraction shows 
overlap.  Against this, the illustration shows three hypothetical possibilities 
for the GPL’s “whole.”  Each scenario is numbered in the figure, with 
explanations below. 

                                                                                                               
222.    See Lemley, supra note 108, at 1017-18; Loren, supra note 32, at 63-64. 
223.    Dan Ravicher, Software Derivative Work:  A Circuit Dependent Determination 

4-5, at http://www.pbwt.com/Attorney/files/ravicher_1.pdf (Nov. 8, 2002) (discussing the 
disparity among the various circuits of the federal courts of appeals as to the test each has 
adopted to define the scope of a derivative work, and noting that several circuits “have yet to 
declare their definition of derivative work”). 

224.    See Zittrain, supra note 6, at 267-68 (noting that the copyright doctrine underlying 
open source software is ambiguous). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 141 

 

Figure 6 – Efficacy Model Illustration – scenarios for the infectious “whole” 

 
 
The first scenario in Figure 6 posits that from a copyright perspective the 

infectious “whole” is coterminous with the outer scope of the derivative 
work right.  It is identified by: 1. whole (c).  In this instance, the scope and 
uncertainty of the infectious terms calibrate with that of the derivative work. 

Although there is no empirical evidence to support the first scenario, 
anecdotally, this is probably the most common interpretation of the GPL’s 
infectious “whole” - that it maps to the derivative work standard.  The figure 
shows this standard as a gray vertical bar, drawn widely to illustrate the 
derivative work standard’s uncertain scope. 

The second and third scenarios posit that the infectious phrase in the 
open source license, such as the GPL’s “whole,” is something less, 
2. whole (p), or something more, 3. whole (k), than the derivative work 
standard. 

Scenario two, 2. whole (p), illustrates reducing the infectious terms by 
granting a permission that disclaims some scope of right potentially 
reachable under copyright’s derivative work right.  Linus Torvalds did this 
when he clarified that user programs making normal system calls to the 
Linux kernel were not infected by the GPL.  In the previous discussion of 
this, I posited that one might even say that Torvalds applied a slight variation 
of the GPL to the Linux kernel, which I dubbed the GPL-INC, for “GPL with 

Reproduction 
Right 

Derivative 
Right 

Couple, 
Integrate 

Modify, Extend Intermix 

 R
ig

ht
s 

  C
od

e 

1. whole 
     (c) 

3. whole 
     (k) 

2. whole 
     (p) 

Key:  
  k = contract std. 
  c = copyright std. 
  p = permission 

extend too 
far, misuse? 

reduce the infectious scope? 



142 RUTGERS LAW JOURNAL [Vol. 36:53] 

immunization for normal system calls.”225 Clearly, Torvalds’ application of 
the GPL-INC did not move the bar to the left as far as scenario two compares 
to scenario one.  However, there was some movement to the left along these 
continuums, reducing the uncertainty of infectious scope in an important 
technical scenario.  This benefits the GNU/Linux operating system by 
allowing software applications, open or closed, to run on GNU/Linux, 
thereby increasing demand for the operating system.226 

The vertical bar in scenario two is thinner than the bar in the first 
scenario.  This suggests that a license standard, as opposed to copyright’s 
derivative work, can be more precise.  The licensor has the power to write a 
more specific standard into the permission.  Although the GPL’s “whole” 
may not create a bright line standard, a license instrument could use language 
that creates a specific standard.  This is suggested by the vertical dotted line 
running through the gray vertical bar for scenario two.  In many instances it 
would be possible to write the license permission in sufficient technical 
detail so as to grant a permission that gives up otherwise excludable rights 
under copyright.227  The Lesser GPL is one example of this approach.  It 
allows open source software under its purview to combine with 
non-open source software in a few technically defined ways.  The 
Lesser GPL is the bright line standard that the GPL is not. 

Scenario three, 3. whole (k),  imagines an infectious standard that goes 
beyond the derivative work right.  Such a maneuver would require 
enforcement of the infectious license as a contract, in order for the licensor to 
take advantage of the possibility to control the licensees’ activity beyond the 
copyright power.228  Although it seems farfetched, some commentators have 
alluded to the possibility of copyright misuse arising from infectious 

                                                                                                               
225.    See supra note 166 and accompanying text. 
226.    See Lichtman, supra note 185, at 617-18 (describing how demand will increase for 

a technology platform such as an operating system when it interoperates with more 
applications). 

227.    See Gomulkiewicz, supra note 23, at 97-101 (arguing for an organizational 
process to improve and evolve open source licenses, which the author finds “buggy,” and 
noting that such a process follows the approach of standards organizations who “create 
technical specifications aimed at achieving integration” of many vendors’ products). 

228.    See Bowers v. Baystate Techs., Inc., 320 F.3d 1317, 1323-27 (Fed. Cir. 2003) 
(holding that a license agreement was not preempted by copyright, and thus that the 
anti-reverse-engineering clause in the contract overrode any fair use right of the licensee to 
reverse engineer the software). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 143 

 

terms.229  Notwithstanding this issue, there is some limit to the derivative 
work right.  But beyond this limit, software can still couple and integrate.  
Thus, an open source license, enforceable as a contract, may have infectious 
terms reaching beyond the derivative work right.  Scenario three depicts this 
possibility. 

The efficacy model expressed by Figure 6 relates the continuum of rights 
with the continuum of software interaction.  Language, typically in a written 
instrument, can grant permissions based on those rights.  The permissions 
might be expressed by an artisan vocabulary arising from the technological 
continuum.  Such language may have different operative impact if given 
effect under the law of contract versus the law that might apply to a generally 
applicable permission or license.  In either case, the tough problem is 
interpreting the boundary of the infectious terms.  In the GPL, this problem is 

                                                                                                               
229.    Kem McClelland, A Practical Guide to Using Open Source Software in a Time of 

Legal Uncertainty, Patents, Copyrights, Trademarks, and Literary Property Course Handbook 
Series, Understanding Electronic Contracting 2003 The Impact of Regulation, New Laws & 
New Agreements, Overhead 5 (PLI Order No. G0-019Q 2003), 743 PLI/Pat 351 (listing 
“Potential copyright misuse?” as among the legal issues for open source software and the 
GPL). 

Professor Nimmer notes that the defense of copyright misuse involves “extending” the 
scope of the copyright “monopoly” in violation of the antitrust laws.  See NIMMER, supra note 
28, § 13.09[A], at 13-292 (stating that there is some ambiguity as to what types of 
“extensions” of the copyright holder’s rights equate to copyright misuse, but noting “that such 
violations have been held to occur as a result of a number of copyright owners acting in 
combination, or alternatively, as a result of a particular copyright owner’s refusal to license 
certain of [its] more desirable product unless tied-in with licenses of certain of [its] less 
desirable product”) (footnotes omitted); see also Dan Burk, Anticircumvention Misuse, 50 
UCLA L. REV. 1095, 1114-15, 1124-27 (2003) (describing how the misuse defense originated 
in patent law and migrated to copyright, and that “[a]lthough the importance of the misuse 
defense has waned in patent law, it has experienced a somewhat surprising renaissance within 
the law of copyright”). 

Professor Nimmer puts a comprehensive discussion of misuse outside the scope of his 
treatise.  See NIMMER, supra note 28, § 13.09[A], at 13-292.  It is similarly outside my scope, 
except to note that its possibility, even if remote, seems greater with broad infectious terms of 
expansive scope.  This is so because if these terms are given effect under contract in such a 
way as to extend the licensor’s control over the licensee beyond the reach of the derivative 
work right, or other rights of copyright, then the situation is analogous to copyright misuse.  
See Lasercomb Am., Inc. v. Reynolds, 911 F.2d 970, 978-79 (4th Cir. 1990) (holding that 
licensee’s misuse defense was successful when licensor’s agreement prohibited licensee from 
developing a competitive product); Burk, supra, at 1124-25 (discussing Lasercomb, and 
describing it as the “germinal case” to “apply misuse principles to overreaching in copyright 
licensing”). 



144 RUTGERS LAW JOURNAL [Vol. 36:53] 

particularly difficult given the minimal guidance of the word “whole,” 
although the GPL’s safe harbors offer some help. 

This interpretational challenge, in light of the efficacy model, suggests 
two things.  First, open source licenses with infectious terms should draw a 
brighter line for the reach of such terms.230  Second, given the uncertain 
scope of the derivative work right in this area, licenses should steer clear of 
merely incorporating this standard to define infectious reach.231  Both of 
these suggestions are further buttressed in the next section, which examines 
the effect of infectious terms and considers how the situation might change 
under these suggestions.  

C.  Infectious Effects 

Just as there are justifications for copyright’s derivative work right,232 
open source infectious terms may also have beneficial aspects.  On the other 
hand, they may create problems, as the derivative work right can.233  Thus, 
their efficacy depends on the interplay between the benefits and problems. 

                                                                                                               
230.    See Gomulkiewicz, supra note 23, at 76-77.  Gomulkiewicz summarizes the 

general need for “less buggy” open source licenses as set forth below: 
Although open source software developers may regularly fix buggy software, they 
do not regularly fix their licenses.  There are a multitude of licenses that purport to 
meet the goals of open source development.  These licenses reflect different, and 
sometimes contradictory, approaches to core licensing issues. Many of these 
licenses are buggy - out of date, misapplied, misunderstood and hopelessly 
confusing.  This state of affairs benefits no one.  Hackers suffer because they do not 
know which license form to use.  End users suffer because they do not fully 
understand the terms of use.  Commercial software developers suffer because they 
have difficulty discerning how open source licensed software may affect their 
intellectual property. 

Id. (footnotes omitted). 
231.    See Loren, supra note 32, at 62 (“In the context of integrated works in new 

technology, this broad phrasing in the statute provides little guidance in determining the 
appropriate scope of the derivative work right.”). 

232.    See Goldstein, supra note 1, at 252 (arguing that the derivative work right helps 
balance “the incentives required for the production of underlying works against those required 
for the production of derivative works,” in part by generating a level of original investment in 
creation of new works calibrated to the expected returns from all markets, including those for 
the original and for the derivatives). 

233.    See Amy B. Cohen, When Does a Work Infringe the Derivative Works Right of a 
Copyright Owner?, 17 CARDOZO ARTS & ENT. L.J. 623, 642-47 (1999) (discussing several 
theories by several commentators as to how and why there should be limits to the derivative 
work right); Lemley, supra note 108, at 1074 (noting that the derivative right in the copyright 
holder creates barriers for others who might improve upon the original creation). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 145 

 

The subsections below review both sides of the coin, looking at effects 
on both open source and proprietary software within the greater software 
ecosystem.  On balance, I conclude that broad infectious terms of expansive 
scope are not desirable for open source software.  On the other hand, they 
may be beneficial to a degree, or at least tolerable, if precisely defined and 
calibrated in light of other considerations. 

A key assumption of my analysis is that the foreseeable future will 
include both types of software.234  If true, policy concerns suggest promoting 
interoperability and cross-compatibility.  Practically, these goals are 
important due to network economies in information technology.  Both types 
of software are more valuable when they enable greater use of computing 
generally, and in particular the internet.  Their ability to do so is enhanced by 
interoperability and cross-compatibility. 

Copyright law also recognizes that software must interoperate.  Courts 
have found fair use of copyrighted software when the purpose of the use is to 
reverse engineer the software for compatibility.235  Recent additions to the 
copyright statute, granting anticircumvention rights, explicitly acknowledge 
the importance of allowing reverse engineering for interoperability.236  
Sometimes reverse engineering enables direct competition, but sometimes it 
merely facilitates interoperability.  Just as there is a relationship between 
reverse engineering and interoperability, there is an association between 
infectious terms and interoperability.  Thus, arguments related to reverse 
engineering apply, with some rework, to infectious terms.  The subsections 

                                                                                                               
234.    See FINK, supra note 6, at 159-67 (describing a long-term vision of coexistence 

between both open source and proprietary software, and positing that some of the economic 
characteristics of such coexistence will resemble some aspects of pioneer and generic drug 
company coexistence). 

235.    See Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1526 (9th Cir. 1992) 
(finding that defendant’s reverse engineering of plaintiff’s object code was fair use); NIMMER, 
supra note 28, § 13.05[D][4], at 13-227 (noting that the need for reverse engineering of 
computer software arises in the first place due to software’s unique ability to hide the source 
code instructions in the object code, and that the reverse engineering fair use doctrine of Sega 
has held up in the paradigm case of a “user lawfully in possession of a copy of computer 
software in object code format to reverse engineer that code for the sole purpose of 
manipulating elements of that code for permissible purposes, when no other readily available 
substitute mechanism exists for that purpose”). 

236.    17 U.S.C. § 1201(f)(1) (2000) (providing that “a person . . . may circumvent a 
technological measure . . . for the sole purpose of identifying and analyzing those elements of 
the program that are necessary to achieve interoperability of an independently created 
computer program with other programs”). 



146 RUTGERS LAW JOURNAL [Vol. 36:53] 

below bring forth these and the other arguments that go to the efficacy of 
infectious terms. 

Each of the next three subsections looks at a different aspect of the 
problem.  The first subsection begins with the potential justifications for 
infectious terms.  The second looks at the contrary perspective:  problems 
caused by broad, far-reaching infectious terms.  The last examines 
implications of these views, concluding that infectious terms need brighter 
lines to diminish their otherwise inefficacious impact on license certainty and 
software interoperability. 

1.  Purported Benefits of Infectious Terms 

Two supposed benefits could be advanced for infectious terms.  First, the 
FSF has argued that infectious terms reinforce open source software 
development and adoption.237  Second, infectious terms may buttress the 
other key open source conditions:  source code availability and royalty-free 
use. 

The FSF argument presupposes competition between open source and 
proprietary software.  It then offers reasons why infectious terms help open 
source in the fight.  In its Lesser GPL and associated documents, the FSF 
argues that broad, infectious terms help prevent proprietary developers from 
appropriating high-quality open source software.238  It makes the related 
point that some proprietary software might convert to open source in order to 
have these high-quality inputs, or to interoperate with them.239  Implicit in 
these points is that they suppose a bandwagon effect from the incentive to 
succumb to open source terms:  as more very good open source software is 
available under the GPL, more proprietary software will convert to open 
source, leading to an upward spiral of superior software and increasing open 
source use. 

Undoubtedly, there is competition between open source and proprietary 
software.  Further, empirical and anecdotal evidence suggests that open 
source software development has advantages for software quality, at least for 
some classes of application.240  One limit to the FSF argument, however, is 

                                                                                                               
237.    See supra notes 172-76 and accompanying text. 
238.    See supra notes 172-76 and accompanying text. 
239.    See supra notes 172-76 and accompanying text. 
240.    Peter G. Neumann, Robust Open-Source Software, COMMUNICATIONS OF THE 

ACM, Feb. 1999, at 128; see Douglas C. Schmidt & Adam Porter, Leveraging Open-Source 
Communities to Improve the Quality & Performance of Open-Source Software 2-3 (Position 
paper submitted to the ACM Workshop:  Making Sense of the Bazaar: First Workshop on 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 147 

 

that the high quality of open source software is thought to systemically 
spring from the massive peer review process inherent in users holding source 
code.241  Infectious terms that limit compatibility and interoperability may 
slow the adoption momentum for the software.  This could lessen the number 
of reviewers. 

Recalling the examples styled from Progress Software,242 it could very 
well occur that more copies of the open source database engine component 
will be in circulation if end users can apply either open source or proprietary 
storage modules.  More users would have the database engine source code, 
even if they did not have all of the source code for all of the storage modules.  
This could increase quality if quality derives from more “eyeballs” having 
access to the source to find and report bugs.243 

Another counterpoint to the FSF’s argument is the Apache web server 
example.  This application uses an attribution-only license.  It does not 
require the typical open source conditions and has no infectious terms, 
although the source code is available.244  The Apache application continues 
to lead its field, suggesting that infectious terms are not necessarily a causal 
factor to achieve that status.  Additionally, there is the intuitive inference that 
Apache adoption is greater in part because users do not have to worry about 
broad, uncertain infectious terms of expansive scope.245  Thus, while such 

                                                                                                               
Open Source Software Engineering), at http://opensource.ucc.ie/icse2001/schmidt.pdf (last 
visited Dec. 27, 2004) (describing application types, or “domains,” where the authors question 
whether the open source approach will be successful, including niche and vertical markets, 
low-margin markets, and secure computing markets); see also Zittrain, supra note 6, at 282-83 
(discussing the comparative reliability of open source and proprietary software). 

241.    Open source’s peer review debugging process is famously described by the pithy 
comment, “[g]iven enough eyeballs, all bugs are shallow.”  Raymond, supra note 4. 

242.    See supra notes 192-200 and accompanying text. 
243.    The counter argument to my point is that without the source code for the storage 

module, finding the bug in the database engine may be more difficult even when one has the 
source code for the database engine.  Classically in software application development, one of 
the challenges for debugging large projects is to determine whether errors are caused by the 
application’s program or by another program it relies on, typically the operating system.  One 
partial solution to this problem is to require crispness, stability, and trustworthiness of the 
interface between the components.  Open source software designed to interact with other 
software will likely employ standard interfaces and protocols, or well-designed access and 
exchange mechanisms. 

244.    See supra notes 43, 57-59 and accompanying text. 
245.    While empirical evidence is lacking as to the influence a lack of infectious terms 

has on Apache adoption, the GPL’s infectious terms are one of its most contentious and 
 



148 RUTGERS LAW JOURNAL [Vol. 36:53] 

terms might coercively attract an occasional convert to open source 
licensing, the lack of such terms, or their replacement with bright-line 
infectious terms, may allow even greater adoption of open source software.  
As such, adopters would worry less about infectious terms. 

For Apache, there is continued demand for the application in its entirety 
and for its components as packaged and offered by the open source 
programmers developing the Apache web server and related technology.  
Currently, under its attribution-only license, proprietary programmers can 
cannibalize some or all of Apache.  The latter would be unproductive 
because the market demand is for the original due to its quality and other 
attributes arising from the open source development model.  Cannibalizing 
pieces of Apache for proprietary products is a different concern.  An open 
source license could prohibit this, and if so its anti-cannibalization effect 
might be enhanced by infectious terms. 

This suggests the second potential set of benefits from infectious terms:  
buttressing the source code availability and anti-royalty provisions central to 
open source licenses.  The value of source code availability might diminish 
somewhat if intermixed with or coupled to proprietary software without 
source code.  Similarly, infectious terms might create a pricing buffer zone 
around free-use open source software.  The zone helps diminish issues of 
price ambiguity that might otherwise exist if “free” open source software is 
distributed intermixed with priced proprietary software. 

The source code concern is evident in the FSF’s Lesser GPL.246  That 
license allows open source code to intermix with proprietary code in certain 
specified ways.  Among the conditions are several that appear to prevent the 
proprietary code from blockading beneficial changes to the open source 
part.247  The conditions restrict the proprietary code such that even if a 

                                                                                                               
discussed aspects.  Apache, however, does not use the GPL.  Moreover, to some extent, many 
see infectious terms as a risk to their internal intellectual property and seek to minimize or 
manage this risk when incorporating open source into their computing infrastructure.  See 
FINK, supra note 6, at 204 (describing that information technology managers need to be 
prepared to evaluate the risk of mixing GPL code with other code). 

246.    The source code concern is also explicitly expressed in the GPL’s comments about 
controlling the mode of distribution for the software.  GPL, supra note 8, § 2 (providing “it is 
not the intent of this section to claim rights or contest your rights to work written entirely by 
you; rather, the intent is to exercise the right to control the distribution of derivative or 
collective works based on the Program”). 

247.    Lesser GPL, supra note 153, §§ 6, 6(b) (describing that a proprietary program 
using the library of routines covered by the Lesser GPL must use: a suitable mechanism 
during the runtime environment to refer to those routines; suitable meaning that if a user 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 149 

 

developer changes the open source code, it will still interoperate with the 
proprietary code. 

Accounting for these problems is a concern for the Lesser GPL because 
its infectious terms are weak,248 but for GPL software the strong infectious 
terms ensure that all necessary information is available for intermixing.  This 
happens because the infectious terms force source code availability for the 
other work.  While there are other ways for different software works to be 
compatible,249 intermixing the source code in the development environment 
allows the greatest flexibility.   

Thus, the relationship between infectious terms and source code 
availability is that the latter is potentially more useful when there is strong 
scope for the former.  Given the powerful benefits that source code 
availability bestows on open source’s collaborative development process, 
this suggests a policy rationale for some degree of infectious terms or for 
deploying the power arising from infectious terms in particular ways, such as 
to support collaborative development among open source software, or to 
support interoperability among open source and proprietary software.  One 
limit to this argument is that most proprietary software will not succumb to 
infectious terms.  For the foreseeable future, both types of software will 
occupy the market.  Proprietary software, rather than shed its traditional 

                                                                                                               
installs newer, interface-compatible versions of the library, the program will still work with 
the library; and requiring distribution of information necessary to reproduce the executable 
form of the combined work). 

248.    Id. §§ 5-6 (positing a number of technical scenarios where combining a 
proprietary work with the Lesser GPL library might be a derivative work, but then granting 
certain technically-defined allowed uses “regardless of whether [the combined work] is legally 
a derivative work”). 

249.    Figure 5 in Part V.A, entitled “– Open Source Software Ready to Intermix with 
Other Software,” illustrates software designed to interoperate.  The pieces are ready to fit 
together in Figure 5.  This allegorically shows that software can be built using components.  In 
many cases, this is a matter of good design.  The components need connections to other 
components.  The connections are typically via standard interfaces and protocols or 
well-designed access and data exchange mechanisms.  The classic wisdom from computer 
science is that with proper isolation and “layering” of the software’s functionality, quality will 
be higher and interoperability and reusability will be greater.  This relates to the source code 
versus object code distinction because the closed object code can have a well-documented, 
well-designed, and well-behaved interface.  With this, one can connect open source code to 
the closed code to achieve interoperability.  For an analysis of how intellectual property law 
may influence the market for software components, see generally Mark A. Lemley & David 
W. O’Brien, Encouraging Software Reuse, 49 STAN. L. REV. 255 (1997). 



150 RUTGERS LAW JOURNAL [Vol. 36:53] 

license upon the entreaty of infectious terms, will rebuff the overture and 
simply not play.250  To the extent beneficial interoperability between the 
disparate software is lost, this is a cost associated with infectious terms. 

Besides the potential supportive effect for source code availability, 
infectious terms also may support the anti-royalty provision common for 
open source licenses.  They deter combinations like the one at issue in the 
Progress Software case.251  This decreases situations where price 
disaggregation would be difficult.  It is easier to determine whether a 
distributor is charging royalties contrary to the open source license if there 
are fewer components in the ultimate price the purchaser pays.  
Enforceability of the anti-royalty provision is thus enhanced. 

While infectious terms thus may play a role in protecting the anti-royalty 
provision, their impact must be viewed in light of a potentially greater effect:  
the potential for other distributors to enter the market for the open source 
software.  Assuming no price-fixing cartel, such competitive entry enforces 
the anti-royalty provision, which itself has a disaggregating effect by driving 
the prohibited royalty charge to near zero.  Customers will be able to 
compare prices and benefits to estimate whether the aggregated prices of a 
particular open source distributor are too high.252  Admittedly, this is an 

                                                                                                               
250.    See Master End-User License Agreement for Microsoft Software, supra note 31 

(giving the anti-open source license provisions of a Microsoft license). 
Even a large software company generally supportive of open source, Oracle, determined 

that it needed anti-open source provisions to guard against infectious terms for some of its 
software components.  Oracle Technology Network, Oracle Technology Network Developer 
License Terms, at http://otn.oracle.com/software/htdocs/devlic.html (last visited Dec. 27, 
2004).  The specific provision is as follows. 

[Y]ou may not develop a software program using an Oracle program and an Open 
Source program where such use results in a program file(s) that contains code from 
both the Oracle program and the Open Source program (including without limitation 
libraries) if the Open Source program is licensed under a license that requires any 
“modifications” be  made freely available.  You also may not combine the Oracle 
program with programs licensed under the GNU General Public License (“GPL”) in 
any manner that could cause, or could be interpreted or asserted to cause, the Oracle 
program or any modifications thereto to become subject to the terms of the GPL. 

Id.  
251.    See supra notes 192-99 and accompanying text. 
252.    From the perspective of a user deciding whether to use open source code, a 

number of factors are at issue.  FINK, supra note 6, at 95-105 (listing and discussing over a 
dozen cost factors). 

One factor not listed by that commentator is opportunity cost.  Taking someone else’s 
open source software and deploying it in one’s organization may mean forgoing any future 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 151 

 

imprecise process.  But, within broad divisions, it should allow user buying 
power to discipline open source distributors. 

Many other factors could influence the interrelationship among 
infectious terms, source code availability, and the anti-royalty provision of 
open source licenses.  These include the type of software; whether it is a 
platform technology; its degree of susceptibility to increased value due to 
network effects; competition in the application space from both proprietary 
products and other open source software; a host of technological factors; and 
factors related to the open source development community’s norms and 
practices.253  Within this haze of additional factors, there is some possibility 
that infectious terms benefit the other key open source terms.  However, the 
reasons discussed above show that there are limits to these beneficial effects. 

The same limits hold true for the first argument for infectious terms:  that 
they reinforce open source software development, adoption, and conversion 
of other software.  The last claim seems particularly unlikely, given the size 
and scale of the proprietary software industry. 

There are other reasons to think that the posited benefits of infectious 
terms are limited.  Many other aspects of the innovative and clever GPL have 
been imitated.  But infectious terms have been the GPL’s least imitated 
feature.  A key certification program for open source licenses does not 
require infectious terms.254  Some open source projects, such as Apache, are 
successfully without not only infectious terms, but also without most other 
key open source license conditions.  This indifferent attitude to infectious 
terms introduces the next section, the potential problems arising from 
broadly stated infectious terms of expansive scope. 

                                                                                                               
opportunity to commercialize improvements based on the original open source code.  This 
opportunity cost is greater the stronger the infectious terms.  Infectious terms make it more 
difficult to partition the improvements in ways that might escape infection.  In addition, such 
partitioning may drive the programmers to suboptimal software design approaches in order to 
avoid infection.  Thus, an organization might weigh these potential costs of partitioning and 
designing around infection in its decision.  It is certainly conceivable that in some cases, these 
costs and the opportunity cost will outweigh the no-royalty and other perceived benefits of 
open source. 

253.    See Vetter, supra note 7, at 627, 630-31 (describing the norms and practices of 
open source software development, and describing the influence of programmer reputation on 
the development process). 

254.    See OSD, supra note 48, §§ 1-3, 7-9 (none of the relevant sections of the Open 
Source Definition discuss infectious terms, although the OSD does acknowledge that 
copyright’s derivative work right will apply for modified, extended, or intermixed works). 



152 RUTGERS LAW JOURNAL [Vol. 36:53] 

2.  Problems with Infectious Terms 

Uncertainty in the locus of infection is the hallmark difficulty for broad 
infectious terms.  This manifests in several ways.  The risk-averse are less 
likely to adopt open source software with such terms.  The uncertainty 
impedes useful combinations between open source code and proprietary 
code.  And legal risks such as indirect liability or even copyright misuse may 
arise or be exacerbated by expansive infectious terms.  Moreover, the 
uncertainty has costs of its own arising from increased transaction costs and 
difficulty in determining the scope of rights in the code. 

As the efficacy model discussion surrounding Figure 6255 illustrates, 
both the technological and legal continuum underlying infectious terms do 
not readily admit to precise boundaries.  The GPL’s infectious terms 
compound the difficulty.  Its rubric of the “whole” provides little guidance to 
eliminate the uncertainty.  Its two safe harbors cover some situations, but 
leave much unspecified.  Any broadly specified infectious terms that 
incorporate copyright’s derivative work standard as a measure of the terms’ 
scope will similarly suffer. 

These uncertainties create risks daunting to some who might otherwise 
adopt open source software.  A growth opportunity for GNU/Linux is 
corporate information technology departments.256  These groups represent an 
important purchasing force in computing, but infectious terms elevate their 
risk of using open source software.  Such terms create a need to internally 
partition and segregate code to assure that the open source software does not 
infect existing code internally developed or provided by third parties.257  

                                                                                                               
255.    See supra Part V.B. 
256.    Both IBM and Red Hat are marketing GNU/Linux in the corporate information 

technology market.  See William M. Bulkeley, Out of the Shadows:  Open-source Software is 
not Only Becoming Acceptable; It’s Also Becoming a Big Business, WALL ST. J., Mar. 31, 
2003, at R6 (“[M]ajor companies like IBM, Sun and Hewlett-Packard Co., awakened to the 
profit opportunities in providing hardware and services linked to free software, are paying 
some of their programmers to work on Linux and other open-source software.”), available at 
2003 WL-WSJ 3963322; supra note 208 (describing Red Hat’s efforts to market GNU/Linux 
for enterprise computing). 

257.    Whether internal partitioning and similar precautions are per se required is an 
interesting question.  Under the GPL, redistribution of the software triggers the key open 
source obligations.  Since the GPL specifically uses the word “distribution,” copyright’s 
public distribution right is in play.  There is some ambiguity to the degree of “public-ness” 
necessary to violate copyright’s distribution right.  NIMMER, supra note 28, § 8.11[A].  
Suppose an internal user blithely intermixes open and closed code, assuming that there would 
never be a distribution triggering the open source conditions.  However, corporate managers 
 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 153 

 

Moreover, proprietary vendors are reacting to infectious terms by erecting 
licensing safeguards to prohibit intermixing with open source.258  Thus, 
information technology purchasers must respond to these requirements.  
Although infectious terms are not the crux of the SCO case,259 there is 
anecdotal evidence that the infringement risk publicized by SCO is slowing 
the rate at which corporate information technology departments adopt and 
deploy GNU/Linux.260  Risk perceptions from infectious terms have similar 
effects.  Also, a key GNU/Linux competitor, Microsoft, touts infectious 
terms as a key risk factor for corporate adoption of open source software.261  
Given all these influences, broad infectious terms impede open source 
deployment and to some degree slow its adoption rate. 

The FSF has argued against its own Lesser GPL license because that 
license puts “popularity” above reinforcing advantages among open source 
programmers.262  If one takes “popularity” to mean deployment in mixed 
computing environments using both open and closed code, the argument 
presupposes that the benefits from network effects for interoperating with 
proprietary code are less valuable than the gains to be had by cloistering (via 
infectious terms) open source code to only open source environments.  This 
argument implicitly acknowledges that infectious terms will result in less 
adoption of open source.  It justifies this result with benefits arising from 

                                                                                                               
want to minimize risk and allow for future contingencies.  Thus, such blithe intermixing could 
put an information technology department in a difficult position if later a distribution 
triggering copyright’s distribution right became necessary.  Further, corporate technology 
managers now face anti-intermixing license terms from some proprietary software vendors. 
See supra notes 31, 250 (describing licenses from proprietary software vendors with 
anti-open-source provisions).  These license provisions require a buffer between open and 
closed software, limiting beneficial interoperability. 

258.    See supra notes 31, 250. 
259.    See supra notes 17-18, 20-22 and accompanying text. 
260.    Head to Head, FIN. SECTOR TECH., Nov. 30, 2003 (reporting that a key 

information technology analyst group was advising corporate customers “to delay deployment 
of Linux in important systems until the case was settled”), available at 2003 WL 61100882; 
Joseph Menn, SCO Suit May Blunt the Potential of Linux, L.A. TIMES, June 6, 2003, available 
at 2003 WL 2417592. 

261.    Microsoft Corp., Some Questions Every Business Should Ask About the GNU 
General Public License (GPL), at 
http://www.microsoft.com/korea/business/downloads/licensing/Gpl_faq.doc (last visited Aug. 
7, 2003, but later found to be unavailable at this address) (on file with author) (discussing in 
question nine the risks perceived by Microsoft arising from the GPL’s “viral” nature). 

262.    Why-Not-LGPL, supra note 153. 



154 RUTGERS LAW JOURNAL [Vol. 36:53] 

creating a critical mass of high-quality open source software.  How the 
balance factors out does not admit to an empirical answer, although one 
wonders whether GNU/Linux would have achieved its critical mass without 
an explicit safe harbor for user programs merely running on the operating 
system making normal system calls. 

The second difficulty arising from uncertain infectious terms is that they 
impede useful combinations between open source code and proprietary code, 
thereby inhibiting interoperability and compatibility.  The efficacy model of 
Figure 6263 and the examples styled from the Progress Software264 case both 
illustrate this.  Situations like the Progress Software case suggest direct 
impedance of beneficial interoperability.265  To some degree, the database 
engine was designed to operate with multiple storage modules.  On one hand, 
a compatibility capability was provided.  But, on the other, infectious terms 
eliminated its usefulness.  The efficacy model shows that infectious terms 
measured by the derivative work right will locate in a fuzzy outer zone of 
intermixed and coupled “other” software.  When such “other” software is 
proprietary, the result may be that the user foregoes intermixing, possibly 
foregoing beneficial interaction between the code.  Or, the infectious terms 
might prod a user to couple the software in less-than-optimal ways in order 
to give a wide berth to the infectious zone.   

Another example of this effect is interoperability within the Linux kernel 
between core GPL protected kernel code and loadable modules,266 some of 
which are proprietary.  The Linux kernel is modular.  Recall that the kernel is 
the first and most powerful program that executes when the computer is 
powered on.  It controls the computing resources and parcels these resources 
to other processes that need them to do work.  The kernel has a capability to 
load modules, i.e., other containers or units of executable code that, in 
essence, become part of the special and powerful process called the kernel. 

Within the kernel, the GPL’s regular provisions apply.  Thus, its 
infectious terms threaten to capture any loadable kernel modules that are not 
licensed under the GPL.  This has been a source of friction and uncertainty 
during the evolution of the kernel and continues to engender questions today.  
Even with the GPL’s infectious terms, some kernel modules are not covered 
by the GPL, yet are regularly used in GNU/Linux.  Furthermore, there have 

                                                                                                               
263.    See supra Part V.B.  
264.    195 F. Supp. 2d 328 (D. Mass. 2002). 
265.    See supra notes 191-93, 195 and accompanying text. 
266.    The issues with loadable kernel modules, or LKMs, are discussed supra note 161. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 155 

 

been no infringement actions.  One example given by Linus Torvalds is a 
driver for a particular filesystem.267  It is not GPL protected, but Torvalds 
does not consider it a derived work because it existed in full before the Linux 
kernel was developed, and was only later adapted to work with the kernel.268  
This kernel module is a good example of “other” software that might be 
thought to fit into the GPL’s identifiably independent and separate works 
safe harbor. 

Interoperability and compatibility within the Linux kernel is one of the 
most important places to have such features.  While the GPL’s infectious 
terms have thrown a cloud on these features, other factors have compensated.  
In some cases, the FSF’s predictions have come true – kernel module 
providers simply succumb to the GPL’s terms.269  In other cases, some 
kernel modules retain non-GPL terms, but have encountered minimal 
resistance.270  The fact that these situations have not resulted in infringement 
suits from kernel contributors is most likely attributable to the deft 
management touch of Linus Torvalds and his “lieutenants,” who direct the 
Linux kernel development effort and facilitate beneficial community 
relations. 

The third difficulty arising from uncertain infectious terms is that they 
may engender or exacerbate legal risks such as indirect liability or even, as 
suggested by at least one commentator, copyright misuse.271  As to the latter, 
if the GPL’s “whole” is enforced as a contract, perhaps because the software 
presented the GPL and implemented an “I Accept” assent from the user, the 
question becomes: what is meant by the “whole”?  In particular, the specter 
of misuse becomes at least remotely plausible when one considers situations 
of apparent imbalance:  a ten page open source program “infecting” a one 
hundred (one thousand?) page proprietary program.  The idea that any other 

                                                                                                               
267.    Torvalds Email, supra note 162.  Torvalds elaborates as follows: 
There are (mainly historical) examples of UNIX device drivers and some UNIX 
filesystems that were pre-existing pieces of work, and which had fairly well-defined 
and clear interfaces and that I personally could not really consider any kind of 
“derived work” at all, and that were thus acceptable.  The clearest example of this is 
probably the AFS (the Andrew Filesystem). 

Id.  
268.    Id. 
269.    See supra Part V.A. 
270.    See supra Part V.A. 
271.    See McClelland, supra note 229. 



156 RUTGERS LAW JOURNAL [Vol. 36:53] 

aspects of a typical open source software license create misuse seems 
farfetched.272  However, the potential sweep of infectious terms might give 
one pause before dismissing that notion.  As to indirect copyright liability, it 
requires a direct act of infringement.  Broad infectious terms increase the 
likelihood of a direct infringing act, thus increasing the infringement risk of 
those distributing open source and proprietary components that can be 
intermixed or coupled.  This risk still may be small, but at the margin, broad 
infectious terms, as compared to narrow terms, elevate the risk. 

Given these difficulties that arise from broad infectious terms of 
expansive reach, the next section argues that on balance their incentive 
effects are not beneficial.  Although there may be some limited justifications 
for infectious terms, they do not offer a compelling case given the alternative 
of specifying infectious terms more tightly. 

3.  Striking a Balance:  Limited Quarantine for Infectious Terms? 

In balancing any purported benefits of infectious terms against the 
problems of broad, uncertain terms, one factor is that such terms are unlikely 
to convert any appreciable percentage of proprietary software to open source 
terms.  This is not to say that the open source approach will not continue to 
grow and impact both open source software and proprietary software.  Some 
proprietary software vendors have employed open source approaches to 
                                                                                                               

272.    The other key open source terms should not raise copyright misuse concerns when 
applied voluntarily by a programmer to her code.  It is difficult to conceive how “donation” of 
a programmer’s code extends the programmer’s control in a way that implicates the 
antitrust-like concerns animating copyright misuse.  The programmer is asking that the source 
code be available and that its use and redistribution be without royalties.  This condition 
applies to her code (and only her code - if there are no infectious terms).  This is not so 
dissimilar from making a donation to one’s law school alma mater with the condition that half 
the donation be used for student scholarships, and that the other half is used to renovate a 
building that will henceforth bear the name of the donor.  There is an impact on competition 
resulting from the donation - other law schools have less attractive buildings.  But, this is an 
impact on competition that our history and policy has not found troubling, with the potential 
exception of the law’s jealousy that tax exempt status for the donation and the recipient not be 
abused.  By my discussion, I do not mean to say that no other terms in an open source license 
could ever raise misuse concerns.  Rather, the key provisions that keep the software “open 
source” should not be thought to do so, especially when applied only to the contributed code. 

At bottom, and aside from infectious terms, copyright misuse is a proposition that fits 
oddly with the gift-based peer production model behind open source software.   See 
McGowan, Legal Implications, supra note 4, at 288 (discussing, in the context of fair use, that 
the fair use factor, “effect on the market,” has less meaning for open source, and that courts 
should instead inquire as to the effect of unauthorized infringement on the production model 
generating the open source software). 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 157 

 

varying degrees.273  Furthermore, open source software’s flagship 
applications, such as GNU/Linux, continue to gain market share.  Thus, the 
other benefits of the collaborative open source development model paint a 
growing and positive role for open source software. 

Too many factors stand in the way of infectious terms converting the 
large installed base of existing proprietary code.  By any aggregate measure, 
proprietary code still dwarfs open source code.  Many vested interests 
permeate proprietary code.  Most of it is controlled by corporate entities with 
profit maximization mandates.  These mandates, and the momentum of the 
status quo, make it difficult for these entities to conceive of business models 
based on open source.  Even if an entity wanted to adopt an open source 
business model, it would want to do so on its own terms, and not by a 
surprise infection.274 

                                                                                                               
273.    Some proprietary vendors engage in “dual-licensing.”  Many in the open source 

community dislike this practice, but a number of proprietary vendors have built successful 
business models from dual licensing.  One example is the Qt product from a company called 
Trolltech.  Trolltech, Licensing Overview, at 
http://www.trolltech.com/products/licensing.html (last visited Dec. 27, 2004) (showing that 
the Qt product is available under a commercial or under a free use license). Qt is a product for 
programmers.  It contains, among other items, libraries of routines that programmers can use 
in their code.  The dual license approach keeps two parallel versions of the product, one for 
free use and one for commercial use. 

A rough characterization of the dual license for Qt is as follows.  Under the Qt Public 
License, a programmer can take and use the free version, but cannot distribute a commercial 
product with it.  See Trolltech, QPL License (annotation), at 
http://www.trolltech.com/licenses/qpl-annotated.html (last visited Dec. 27, 2004).  Moreover, 
for any modifications the programmer makes to the free Qt product, the programmer grants a 
license to Trolltech to use the programmer’s modifications in a commercial version so long as 
the modifications also remain in the free version.  Id. Thus, the commercial version can siphon 
functionality from the Qt free version.  Further, anyone who wants to use the free version as 
“free and open source software” can do so.  See id.  The Qt free software license is in essence 
a modified GPL with additional dual-licensing conditions. 

274.    A footnote to one of the most celebrated events in the growth of the open source 
movement offers a perspective on how entities might make the switch to open source.  In 
1998, Netscape stunned the software world by announcing that it would release an open 
source version of its web browser.  Jim Hamerly et al., Freeing the Source:  The Story of 
Mozilla, in OPEN SOURCES:  VOICES FROM THE OPEN SOURCE REVOLUTION, supra note 2, at 
197-206.  At that time, the Netscape browser was the leader in its field.  Netscape created two 
licenses, one for the existing code base, the Netscape Public License (NPL), and one for new 
files, the Mozilla Public License (MPL).  Mozilla Public License, supra note 48; Netscape 
Public License Version 1.1 [hereinafter NPL], available at 
http://www.mozilla.org/MPL/NPL-1.1.html (last visited Dec. 27, 2004).  A “frequently asked 
 



158 RUTGERS LAW JOURNAL [Vol. 36:53] 

Some entities are proactively modifying their license agreements for 
redeployable software components in order to immunize them from 
infection.  This counter-reaction is not unexpected given their corporate 
duties to protect and shepherd assets.  Another counter-reaction appears in 
the intellectual property due diligence accompanying the sale of entities or 
their assets.  During the last few years, anti-open-source provisions have 
appeared in many of the form agreements for such transactions.  These 
considerations suggest that the benefits of open source development275 are 
attractive to proprietary software vendors, but that these vendors refuse to 
accept coercive infectious terms. 

Rather than adopt broad, uncertain scope license terms that consider 
intermixed and coupled software, licenses should draw as bright a line as 
possible to cabin the scope of infection.276  Saying nothing might be as 
unclear as a broad phrase like the GPL’s “whole.”  Saying nothing could 
leave the scope of the open source permission to hinge on copyright’s 
derivative work right for modified, intermixed, or coupled software.  A 
bright line standard could be expressed in several ways:  (i) in terms of 
specific technical scenarios where there is to be no infection; (ii) in terms of 

                                                                                                               
questions” document discusses both licenses, describing Netscape’s reasons for creating two 
licenses:  the existing code was encumbered with intellectual property and contractual 
obligations, so the NPL gave Netscape rights to use the open source contributions, but 
Netscape had no such rights in separate and new code contributed under the Mozilla License, 
or MPL.  Mozilla, Netscape Public License FAQ, at http://www.mozilla.org/MPL/FAQ.html 
(last visited Dec. 27, 2004) [hereinafter Netscape FAQ].  Netscape described the matter as 
follows: 

We share some code between clients and servers, and we wanted to make sure that 
we could make changes to that code and take advantage of those changes in our 
server products without having to release those products under the NPL as well. . . .  
And finally, we have a number of outstanding contracts to supply source code with 
which we need to remain in compliance. 

Id. 
275.    Some proprietary vendors gravitate to open source development in order to use the 

dual-license mechanism to benefit commercially from community programming efforts, yet 
also contribute something back to the community by making a free version of the software 
available.  See FINK, supra note 6, at 40-41, 180-82 (describing dual-licensing); supra note 
273.  There are a number of potential business models applicable to open source.  FINK, supra 
note 6, at 175-76.  These include using open source software to enable hardware sales, the 
core of IBM’s strategy.  The list also includes dual-licensing, service and support such as that 
provided by Red Hat, and others.  Id.  Finally, many companies are studying or deploying the 
far-flung, collaborative development style that has evolved around, and as a result of, the open 
source software licenses.  Id. at 137-42. 

276.    See supra note 227 and accompanying text. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 159 

 

specific goals, such as immunizing from infection for defined types of 
interoperability or compatibility; or (iii) by reference to some form of digital 
rights expression.277  Any of these methods, or other methods, that 
quarantine the scope of infection would benefit the open source software 
distributed under such a license. 

Linus Torvalds’ decision to clearly state that user programs calling the 
Linux kernel were not infected is an example of the first method.278  Another 
example is the guidance the Mozilla open source project issued with its two 
licenses when Netscape converted its web browser into an open source 
project.  There were two licenses because Netscape had obligations that 
would not permit it to put the existing code into a typical open source 
license.279  Thus, it provided the source and used a first license to apply the 
open source conditions to everyone else, but reserved rights to Netscape to 
use contributed modifications in its proprietary products.280  While such was 
against the spirit of open source development, to its credit, Netscape 
established a second license without these special rights for new code 
contributions.281 

For my analysis, the key point is the precision with which the licenses 
defined the scope of the permission and its application.  The Netscape 
licenses and the “frequently asked questions” document specify what is 
considered a modification to the existing code.282  There are no infectious 
                                                                                                               

277.    Classically, the term has been digital rights management, rather than digital rights 
expression.  See Symposium, Edited & Excerpted Transcript of the Symposium on the Law & 
Technology of Digital Rights Management, 18 BERKELEY TECH. L.J. 697, 732-34 (2003) 
[hereinafter DRM Transcript] (giving comments of Professor Lessig, arguing that digital 
rights expression is different from digital rights management, with the former perhaps being a 
subset of the latter, but with the latter providing the means to control the copyright holder’s 
expressed allowed uses for the digital work).  Regardless of the terminology, these are 
measures that use technological self help to enforce the rights of copyright holders and 
conditions they have keyed to those rights.  Burk, supra note 229, at 1100-02; see also Dan L. 
Burk & Julie E. Cohen, Fair Use Infrastructure for Rights Management Systems, 15 HARV. 
J.L. & TECH. 41, 42-43, 47-54 (2001) (examining whether “rights management systems [can] 
be designed and implemented in a way that preserves the traditional copyright balance,” and 
reviewing the issues surrounding rights management information). 

278.    See supra note 156 and accompanying text. 
279.    Netscape FAQ, supra note 274. 
280.    Id. 
281.    Id. 
282.    Mozilla Public License, supra note 48, § 1.9; NPL, supra note 274 (same).  The 

provision is set forth below. 

 



160 RUTGERS LAW JOURNAL [Vol. 36:53] 

terms in either license in order to maximize the opportunity for compatibility 
between the new contributions and the existing code base.  New files are 
under the second license “even if the new file is called or referenced by 
changes [a programmer] made in [an old file].”283 

Specified interoperability goals are another way to cabin infectious 
terms.  This was implicit in the Netscape/Mozilla licenses, but explicit in the 
parole “frequently asked questions” document.  These goals could be 
expressed in an open source license with infectious terms.  The terms would 
then have a safe harbor that is more useful than the GPL’s safe harbors.  In 
addition, this approach correlates to copyright’s fair use doctrine as applied 
to reverse engineering.284 

The third suggested method to limit infectious terms is to use the 
technology itself.  Recently, commentators have re-expressed the traditional 
paradigm of digital rights management as “digital rights expression.”285  
Digital rights expression is best exemplified by the Creative Commons 
project,286 which is itself inspired from the open source software movement.  
Creative Commons provides licenses for content creators to apply to their 
work when they wish to share a work.  While the licenses do not apply to 
software, they can be encoded in the digital content so the content can 

                                                                                                               
“Modifications” means any addition to or deletion from the substance or 

structure of either the Original Code or any previous Modifications. When Covered 
Code is released as a series of files, a Modification is:  

A. Any addition to or deletion from the contents of a file containing Original 
Code or previous Modifications.   

B. Any new file that contains any part of the Original Code or previous 
Modifications. 

Mozilla Public License, supra note 48, § 1.9. 
283.    Netscape FAQ, supra note 274. 
284.    See supra notes 235-36 and accompanying text. 
285.    See DRM Transcript, supra note 277, at 732-33 (comments of Professor Lessig). 
286.    Creative Commons, Frequently Asked Questions, at 

http://creativecommons.org/faq (last visited Dec. 27, 2004).  The Creative Commons licenses 
“do not make mention of source or object code;” thus the Creative Commons organization 
recommends that creators seeking to publish open source software use an open source 
software license.  Id.  Creative Commons offers “the public a set of copyright licenses free of 
charge. These licenses will help people tell the world that their copyrighted works are free for 
sharing -- but only on certain conditions.”  Id. Content producers can select from a menu of 
possible licenses, each specifying a different set of conditions for sharing the content.  Thus, 
Creative Commons provides tools with which individual work-holders can apply an open 
source approach of their choosing to make their work available for sharing.  It seeks to 
generally enable and apply the open source approach beyond software. 



2004] “INFECTIOUS” OPEN SOURCE SOFTWARE 161 

 

indicate the degree of sharing allowed.287  This innovation could be retrofit 
into open source software to express the boundary of infectious terms. 

Something similar is starting to occur within the Linux kernel, although 
not in a way that limits the GPL’s infectious terms.  When executable object 
code intermixes in the runtime environment, both sets of code must exchange 
information about the subject of their interactions.  Each makes the other 
aware of certain aspects of itself.  This exchange between the Linux kernel 
(and any previously loaded kernel modules) and a loadable kernel module 
occurs in a specific, technically defined way using capabilities provided by 
the kernel.  These capabilities include an exchange that discloses the license 
used by the module.288  Recent enhancements to this mechanism allow 
earlier loaded modules to withhold their information from later loaded 
modules that do not use a GPL compatible license.289  This in essence is an 
anti-interoperability mechanism.  Some developers will not want their kernel 
modules to interact with non-GPL compatible licenses. 

This subsection has reviewed three mechanisms to make infectious terms 
more “bright line”:  greater technical specificity in the license; expression of 
safe harbors for interoperability and compatibility; and digital rights 
expression.  All three of these, or any combination of them, would help 
quarantine broad infectious terms of expansive scope.  Such terms, on 
balance, despite some potential benefits, are unlikely to benefit open source 
software due to the incentive effects they engender.  They are unlikely to 
convert proprietary software in appreciable mass to open source software, 
they inhibit beneficial interaction between the two types of code, and they 

                                                                                                               
287.    Id. 
288.    Tux.org, The linux-kernel mailing list FAQ, “What does it mean for a module to 

be tainted?” § 1(18), at http://www.tux.org/lkml (last visited Dec. 27, 2004) (describing that 
the Linux kernel keeps a list of GPL-compatible licenses, and that when new kernel modules 
are loaded they have an identifier indicating their license which the load process uses to 
compare the identifier to the list, and if the module’s license does not appear on the list the 
loader delivers certain warnings). 

289.    Id. at “What is this about GPLONLY symbols?” § 1(19).  The explanation below 
describes the mechanism that allows Linux kernel module programmers to withhold 
interoperability information from GPL incompatible modules. 

[This capability is to] allow choice for developers who wish, for their own reasons, 
to contribute code which cannot be used by proprietary modules.  Just as a 
developer has the right to distribute code under a proprietary license, so too may a 
developer distribute code under an anti-proprietary license (i.e. strict GPL). 

Id.  



162 RUTGERS LAW JOURNAL [Vol. 36:53] 

create additional risks for open source users.  The uncertainty of such terms 
is too high, raising costs, inhibiting interoperability, and thus impeaching 
their efficacy.  Moreover, one can posit examples, styled from the Progress 
Software290 case, where open and closed code could co-exist.  After isolating 
the infectious terms, the other open source license conditions could be 
satisfied for the open source portion of the mixed-code whole.  They could 
co-exist as an interoperating, cooperative whole.   

VI.  CONCLUSION 

The questionable efficacy of infectious terms arises from the need to 
cabin their scope along two interrelated continuums:  copyright’s 
reproduction and derivative work rights, and the technical progression of 
modifying, extending, intermixing and coupling open source and proprietary 
software.  The GPL’s infectious “whole” has been my foil and prime 
example.  It uses copyright to create the infectious mechanism, specifically, 
the derivative work right.  But the tensions arising from infectious terms 
apply whenever they have expansive breadth and reach that inhibit beneficial 
software interoperability and increase risks for open source users. 

This results in misaligned incentives for optimal coexistence between 
open source and proprietary software.  While infectious terms may have a 
role to play in open source licensing, broad and far-reaching terms, on 
balance, impair open source software.  The GNU/Linux flagship open source 
application offers the foremost example of this.  A decision early in the 
Linux kernel project to specify a key safe harbor from otherwise broad 
infectious terms allowed certainty to prevail.  From this came confidence 
important to the market growth of the operating system.  Similar actions in 
open source licensing generally would help ensure that the licenses 
themselves spread the optimal incentives without creating unnecessary 
resistance to the open source movement. 

                                                                                                               
290.    Progress Software Corp. v. MySQL AB, 195 F. Supp. 2d 328 (D. Mass. 2002). 


