

[183]

GREG R. VETTER∗

Exit and Voice in Free and Open
Source Software Licensing:
Moderating the Rein over
Software Users

CONTENTS

I. Exit from Proprietary Software to FOSS197
 A. The Nature of FOSS Exit...198
 1. Exit for Free Software Advocates201
 2. Exit for Open Software Advocates..........................205
 3. Exit for Corporate Users..206
 B. Influences That May Chill Exit to FOSS208
 C. Disciplining Effects from Exit to FOSS211
II. Exit and Voice in FOSS Licenses and Projects214
 A. License Rights and Language for Exit and Voice215
 1. Corporate-Style FOSS Licenses216
 2. The GPL ..221
 3. Dual Licensing ..224

 ∗ Assistant Professor of Law, University of Houston Law Center (UHLC); Codirector,
Institute for Intellectual Property and Information Law (IPIL). Biography and additional
background available at: http://www.law.uh.edu/ faculty/gvetter. Relevant to this work
is that my background includes a Master’s degree in computer science and full-time
employment experience in the business-to-business software industry from 1987 to 1996.
For helpful comments and discussion, I thank Gabriella Coleman, Bob Gomulkiewicz,
Paul Janicke, Craig Joyce, Ray Nimmer, Joel West, Peter Yu, and the participants at the
Works-in-Progress Intellectual Property Colloquium 2005 cosponsored by the
Washington University School of Law and Saint Louis University School of Law.
Research for this work was supported by a summer research grant from the University of
Houston Law Foundation. I also thank UHLC’s IPIL Institute and its sponsors for
support of my endeavors at UHLC. Many thanks to UHLC students Stacey Reese and
Nivine Zakhari for their research assistance. In addition, I am thankful for the
exceptionally capable support provided by the staff of the University of Houston Law
Center’s John M. O’Quinn Law Library.

184 OREGON LAW REVIEW [Vol. 85, 183

 B. FOSS Development Transparency.................................226
 1. FOSS Project Governance and User Participation ..226
 2. Project Abandonment and the Insufficiency of

Source Code Escrow...228
 3. Responses to Disbanding Development Teams230
III. Exit, Voice, Loyalty, and Neglect—The Extracurricular

FOSS Contributor ...233
 A. Neglect as an Extension to the Hirschman

Framework...234
 B. Voice from Extracurricular FOSS Contributions...........235
IV. Voice from the FOSS Community ..240
 A. Norm Entrepreneurship and Public Advocacy240
 B. License Enforcement as Advocacy Through Legal

Forums...244
 C. Lobbying and the European Union Software Patent

Debate..248
V. Exit and Voice Implications for FOSS Licensing256
 A. The Exit and Voice Framework May Channel FOSS

to Platform Applications..256
 B. Exit and Voice as Competitive Assets for FOSS

Licenses ...263
 C. Evaluating FOSS Licensing Issues in Light of the

Framework...267
Conclusion..272

Passionate politics and contrarian economics pervade free and
open source software (FOSS). Symbiotically, these hallmark
characteristics of FOSS need each other. Reflecting concepts of
voice and exit, they jointly emerged in a cooperation that gives
FOSS part of its motive force. Voice, the expression of FOSS’s
functional freedom for computer users, corresponds to political
effects. Exit, the choice by a proprietary software user to switch to
FOSS, corresponds to economic effects. Voice has two forms:
direct, where a user complains to the software provider, and indirect,
where a user complains generally through means such as advocacy,
evangelism, or lobbying. These politics and economics express their
energetic and productive tension through FOSS code and licensing,
and through FOSS stakeholders within the software ecosystem.

2006] Moderating the Rein over Software Users 185

The interplay of exit and voice is a crucial, yet thus far
underappreciated, element in the FOSS phenomenon. This Article
analyzes four situations from the FOSS movement. It proposes that
a full understanding of FOSS includes the perspectives arising from
the interplay between exit and voice. The analysis applies the
framework in Albert O. Hirschman’s book Exit, Voice, and Loyalty.1
Hirschman observed that mechanisms of both exit and voice
discipline an organization that allows its products or services to
degrade to a state of user dissatisfaction or lesser quality, as in, for
example, a disgruntled employee, who might quit (exit), or complain
(voice).2 The exit mechanism corresponds with the economic
approach as a disciplining force, while voice corresponds with the
political or sociological approach.3 Hirschman did not elevate one
mechanism over the other. He noted the interplay between them for
a variety of conditions and institutions, introducing loyalty as an
interposing mechanism that allows voice room to operate.4 His
framework has been influential over the last thirty-five years in a
variety of legal fields,5 and more generally across the social
sciences.6

1 ALBERT O. HIRSCHMAN, EXIT, VOICE, AND LOYALTY: RESPONSES TO DECLINE IN
FIRMS, ORGANIZATIONS, AND STATES (1970).

2 Id. at 3-4.
3 Id. at 15-16.
4 Id. at 1-4, 15-18, 77-80.
5 See, e.g., Samuel Bacharach & Peter Bamberger, The Power of Labor to Grieve: The

Impact of the Workplace, Labor Market, and Power-Dependence on Employee
Grievance Filing, 57 INDUS. & LAB. REL. REV. 518, 519 (2004) (using Hirschman’s
concepts of “exit,” “voice,” and “loyalty” to derive a model for employee grievance
filing); Larry Cata Backer, Surveillance and Control: Privatizing and Nationalizing
Corporate Monitoring After Sarbanes-Oxley, 2004 MICH. ST. L. REV. 327, 348
(discussing how the SEC’s shareholder model allows for more shareholder “voice”);
Margaret M. Blair, Reforming Corporate Governance: What History Can Teach Us, 1
BERKELEY BUS. L.J. 1, 4, 7-8, 32, 39 (2004) (discussing how corporate governance
reform can affect a shareholder’s “voice” and “exit”); Theodore Eisenberg & Geoffrey
Miller, The Role of Opt-Outs and Objectors in Class Action Litigation: Theoretical and
Empirical Issues, 57 VAND. L. REV. 1529, 1539 (2004) (citing John C. Coffee, Jr., Class
Action Accountability: Reconciling Exit, Voice, and Loyalty in Representative Litigation,
100 COLUM. L. REV. 370, 377 (2000) and Samuel Issacharoff, Governance and
Legitimacy in the Law of Class Actions, 1999 SUP. CT. REV. 337, 366); Ken Matheny &
Marion Crain, Disloyal Workers and the “Un-American” Labor Law, 82 N.C. L. REV.
1705, 1705 (2004) (examining “exit,” “voice,” and “loyalty” and their role in work
relations).

6 See, e.g., Alison Davis-Blake et al., Happy Together? How Using Nonstandard
Workers Affects Exit, Voice, and Loyalty Among Standard Employees, 46 ACAD. MGMT.
J. 475, 475 (2003) (examining how a “blended workforce . . . affected exit, ‘voice,’ and

186 OREGON LAW REVIEW [Vol. 85, 183

Exit and voice marry in unique ways in FOSS. Policy and legal
choices including FOSS licensing issues, FOSS license proliferation,
and estimations of where FOSS fits best in the software ecosystem
should take account of the symbiotic interplay of exit and voice in
FOSS.

The passionate politics come from the free software advocates
within the movement. For this group, self-determination and
functional freedom with one’s computer is the goal. The free
software advocates designed a counterintuitive copyright-based
licensing system that demands preservation of the right to share
software in a form that promotes functional freedom for computer
users. The central preserving conditions are that: (1) the source
code is available and (2) no one is charged royalties for ongoing use.
Combine these with: (3) a right to redistribute in modified or
unmodified form and (4) the requirement that redistributed software
reapply these conditions, and you have a self-perpetuating licensing
system that preserves software freedom for copies or generational
derivatives.7

Politics spawned this counterintuitive license; specifically, it was
the clash of Richard Stallman’s politics with the corporate practice to
make software source code secret. Stallman was part of an early
com munity of programmers at the Massachusetts Institute of
Technology (MIT), where developers freely shared code, and where
he developed his philosophical approach to software sharing.8 As
computers became more important to business, however, corporate

loyalty among standard employees”); Donald W. Light et al., No Exit and the
Organization of Voice in Biotechnology and Pharmaceuticals, 28 J. HEALTH POL. POL’Y
& L. 473, 474 (2003) (discussing the concept of organized “voice” in the biotechnology
and pharmaceuticals fields); Richard E. Matland, Exit, Voice, Loyalty and Neglect in an
Urban School System, 76 SOC. SCI. Q. 506 (1995); Mary Jo Bane, Exit, Voice and
Loyalty in the Church, AMERICA, June 3, 2002, at 12, 14 (discussing how members of
the Catholic Church will react to the sex crime scandals).

7 See GNU Project, GNU General Public License Version 2, http://www.gnu.org/
licenses/gpl.txt (last visited Sept. 15, 2006) [hereinafter GPL]. Version three of the GPL
was posted in draft form in January 2006 to initiate a public revision process for the
license. See GPLv3 Draft, http://gplv3.fsf.org/gpl-draft-2006-01-16.html (last visited
Sept. 15, 2006) [hereinafter GPLv3]. See also David McGowan, Legal Implications of
Open-Source Software, 2001 U. ILL. L. REV. 241, 253-60 (reviewing common terms in
open source and free software licenses); Greg R. Vetter, The Collaborative Integrity of
Open-Source Software, 2004 UTAH L. REV. 563, 599 (describing the open source
approach taken by the GPL).

8 See RICHARD M. STALLMAN, The GNU Project, in FREE SOFTWARE, FREE SOCIETY:
SELECTED ESSAYS OF RICHARD M. STALLMAN 15-16 (2002) (recounting Stallman’s
time working in the MIT Artificial Intelligence Lab during the 1970s).

2006] Moderating the Rein over Software Users 187

approaches impinged on the community norms. Source code, from
the corporate perspective, became a valuable asset. Under the
corporate mindset, source code fits under trade secrets because a
company could profit from the object code, either by renting or
licensing it, without disclosing the source code.9 Stallman decided
to exit these corporate influences as abhorrent to his politics.10 He
invented free software licensing, encoding its terms in the General
Public License (GPL). His goal was to “to guarantee [the] freedom
to share and change free software.”11

The licensing norms spawned by Stallman’s politics also
engendered contrarian economics for FOSS: use of the software was
free. A camp of pragmatists following in the wake of the free
software advocates emphasized that FOSS supports markets even
though the software itself is royalty-free as to its use. These
pragmatists became known as the open source software camp. They
are identified with a different emphasis within FOSS: creating high-
quality software and building a user base for it.12

FOSS licensing, with its emphasis on source code availability,
facilitated a new collaborative software development model. The
model has churned out a number of important software applications,
including the computer operating system known as GNU/Linux.13 It
also generated the Apache web server, the market leader for

9 See RAYMOND T. NIMMER, THE LAW OF COMPUTER TECHNOLOGY: RIGHTS,
LICENSES, LIABILITIES § 1:37 (2d ed. Supp. 2005).

10 See STALLMAN, supra note 8, at 17 (describing the “stark moral choice” Stallman
was facing when he decided to start his FOSS project creating an open source operating
system).

11 GPL, supra note 7, at Preamble.
12 See LINUS TORVALDS & DAVID DIAMOND, JUST FOR FUN: THE STORY OF AN

ACCIDENTAL REVOLUTIONARY 163-71 (2001).
13 The GNU/Linux operating system is sometimes referred to as Linux. An operating

system, however, is not a single large software work, but is rather an aggregation of
many software components. The central component is the kernel, which is properly
called Linux. Distributions of a Linux kernel-based operating system include other
critical components. Most distributions include a set of essential software tools from the
GNU project, a separate open source software effort. Richard Stallman, The GNU
Project, http://www.gnu.org/gnu/ thegnuproject.html (found under the heading “Linux
and GNU/Linux”) (last visited June 8, 2006). Thus, some use the name “GNU/Linux”
for such a distribution. Id. (“We call this system version GNU/Linux, to express its
composition as a combination of the GNU system with Linux as the kernel.”) The GNU
acronym is a self-referential label meaning “GNU’s Not UNIX,” with Unix being a
predecessor computer operating system. See The GNU Operating System,
http://www.gnu.org (last visited Aug. 9, 2006).

188 OREGON LAW REVIEW [Vol. 85, 183

delivering web pages to browsers over the Internet.14 These FOSS
products compete with proprietary products from commercial
software providers. Indeed, the open source software camp is
willing to embrace certain types of commercialization in a way that
free software advocates might not. They are generally more tolerant
of corporate influences. In fact, the open source camp used these
influences to establish relationships through which it could spread
the benefits of FOSS collaborative development and of sharing
source code to gather powerful allies for the movement.15

The economics of FOSS licensing enables collaborative
development and complementary corporate opportunity. The
licensing system’s prohibition on royalties was intended to preserve
the ability to share the software and its source code.16 Such a
prohibition sets a price of zero to run the software, an attractive level
when market conditions are ready to accept the software as valuable.
Most prominent among the open source advocates, Linus Torvalds
provided the impetus for greater acceptance of FOSS. He started an
operating system kernel and then accepted collaborators from across
the globe to enable FOSS’s flagship application, the GNU/Linux
operating system.17 Torvalds describes himself as uninterested in
politics.18 His motivation is to generate quality software.19 The

14 See Netcraft, July 2005 Web Server Survey, http://news.netcraft.com/archives/
2005/07/01/july_2005_web_server_survey.html (reporting a 69.8% market share for
Apache products on active web sites in July and 22.8% for Microsoft, the next most
popular provider).

15 See Jim Hamerly & Tom Paquin, Freeing the Source: The Story of Mozilla, in
OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION 197, 203-06 (Chris
DiBona et al. eds., 1999) (describing the events leading up to Netscape’s decision to
release the source code for its web browser, Mozilla). See also Michael Paige, IBM
Gives Database Code to Open-Source Community, INVESTOR’S BUS. DAILY, Aug. 3,
2004, http://www.investors.com/breakingnews.asp?journalid =22493986&brk=1
(preannouncing IBM’s donation of database source code valued at an estimated $85
million to the open source community).

16 Stallman, supra note 13, at “Copyleft and the GNU-GPL.”
17 See Linus Torvalds, The Linux Edge, in OPEN SOURCES, supra note 15, at 101-02,

108-11 (describing the rationale behind his decisions at Linux’s inception and through
the initial stages of its development).

18 See TORVALDS & DIAMOND, supra note 12, at 165 (explaining his preference for
the more conciliatory European political system as opposed to the more combative
American style); Interview by Marjorie Richardson with Linus Torvalds (Nov. 1, 1999),
http://interactive.linuxjournal.com/node/3655 (responding to queries about his political
interests, Torvalds said “I’m absolutely uninterested in politics. . . . I really don’t want to
go into politics”).

2006] Moderating the Rein over Software Users 189

FOSS licensing approach establishes ground rules for an innovative,
distributed software development approach based on collaboration.20
The prohibition on royalties means that contributing developers do
not have to worry about licensing costs. In addition, it attracts
distributors.

A well-known distributor of GNU/Linux is Red Hat.21 Another
prominent company commercializing FOSS is IBM.22 GNU/Linux
and a host of other open source products complement IBM’s
hardware and services business. Both Red Hat and IBM facilitate
exit from proprietary software to FOSS. The FOSS prohibition on
royalties enables their corporate opportunity in FOSS services.

The free software advocates brought forth FOSS with a passion
that rings with “voice,” as that term is used in Exit, Voice, and
Loyalty. In Hirschman’s account of the forces that may recuperate a
decline in quality or aptitude in a firm, state, or organization, voice
corresponds to the political or social functioning of the firm, state, or
organization.23 Focusing on Hirschman’s thesis as it applies to a
firm, customers who call or write letters to complain about a product,
but who do not switch to a different product, exercise voice.24

19 See Torvalds, supra note 17, at 111 (stating that he “want[s] Linux to be on the
cutting edge, and even a bit past the edge, because what’s past the edge today is what’s
on your desktop tomorrow”).

20 Everyone can see the source code, so remote developers can contribute. Moreover,
ubiquitous source code may procedurally enhance software quality: all developers and
users can see the code, resulting in “massive peer review” to generally increase software
quality and defeat bugs. ERIC S. RAYMOND, THE CATHEDRAL AND THE BAZAAR:
MUSINGS ON LINUX AND OPEN SOURCE BY AN ACCIDENTAL REVOLUTIONARY 4 (1999),
available at http://www.catb.org/~esr/ writings/cathedral-bazaar/cathedral-bazaar/
(coining the phrase “given enough eyeballs, all bugs are shallow,” also known as
“Linus’s Law”).

21 See Red Hat, The Open Source Leader, http://www.redhat.com/about/ (last visited
June 8, 2006) (“Today Red Hat is the world’s most trusted provider of Linux and open
source technology.”). See also William M. Bulkeley, Can Linux Take Over the Desktop?
Open-Source Software Is Ready to Do Battle on a New Front; Here’s a Look at Its
Chances, WALL ST. J., May 24, 2004, at R1 (characterizing Red Hat as “the leading U.S.
distributor of Linux”).

22 IBM, Open Source, Resources for Open Source Development and Implementation,
http://www-128.ibm.com/developerworks/opensource (last visited June 8, 2006)
(providing a forum for the open source community and updates regarding open source
development).

23 HIRSCHMAN, supra note 1, at 4, 15-16.
24 Id. at 4, 30, 36-37.

190 OREGON LAW REVIEW [Vol. 85, 183

Switching products, on the other hand, is a choice for exit.25 In
Exit, Voice, and Loyalty, Hirschman discusses factors influencing
which of these two disciplining forces may be more effective in a
given situation.26 Economists often view exit as the superior option,
but exit is not always practically available; in cases where it is not,
voice plays a more important role.27 Often, both forces are at work
in varying degrees because customers have differing sensibilities.28

This Article applies Hirschman’s framework in Exit, Voice, and
Loyalty to FOSS, focusing on the context of corporate users of
proprietary software, in which FOSS alternatives provide a unique
exit opportunity cloaked in direct and indirect voice.29 I use the
label “direct voice” to refer to Hirschman’s paradigmatic voice
example: customer complaints to the supplier, calling or hoping for a
remedy.30 The label “indirect voice” moves away from a specific
target supplier as audience.31 It includes group behavior, norm
evangelism, advocacy (using public channels or legal forums), and

25 Id. at 4, 36-37.
26 See id. at 36-37, 43.
27 Id. at 21, 33, 43, 80, 83.
28 See id. at 17-18, 22-25, 36-37, 48-49, 77, 80, 83, 111, 124.
29 Hirschman’s framework has been applied to intellectual property and information

law issues in a few related instances. See, e.g., Dan L. Burk, Virtual Exit in the Global
Information Economy, 73 CHI.-KENT L. REV. 943, 945 (1998) (arguing that the Internet
affords an “unprecedented opportunity to explore the interplay of” exit and voice for
digital goods, and that lower cost exit spurns market effects that “will facilitate
competition among firms for information products, and so among nations for intellectual
property regulation”); Light et al., supra note 6, at 475-77, 497 (utilizing “exit” and
“voice” theories in the context of pharmaceutical companies who, the authors argue,
created a situation of minimal exit from their products and noting that the companies may
also corrupt the voice channels used by those entrapped); Dawn C. Nunziato, Exit, Voice,
and Values on the Net, 15 BERKELEY TECH. L.J. 753, 754, 758-60 (2000) (discussing the
“preference-expressing mechanisms of exit and voice” and their interplay with regulation
of the Internet in reviewing LAWRENCE LESSIG, CODE AND OTHER LAWS OF
CYBERSPACE (1999)); Tim Wu, When Code Isn’t Law, 89 VA. L. REV. 679, 696 & n.58,
697-709 (2003) (comparing exit and voice to dichotomous mechanisms to change, or
avoid, laws regulating information goods, where by applying the interest group work of
Mancur Olson, peer-to-peer file sharing is a collective-action mechanism to allow certain
groups to avoid—i.e., exit—copyright law).

30 HIRSCHMAN, supra note 1, at 4, 16, 30.
31 See Michael Laver, “Exit, Voice, and Loyalty” Revisited: The Strategic Production

and Consumption of Public and Private Goods, 6 BRIT. J. POL. SCI. 463, 464-69, 473-74
(1976) (discussing Hirschman’s model and arguments by other scholars who
deemphasize the voice mechanism). Furthermore, Laver argues from a rational choice
perspective that the value of voice is tied to the threat of exit, and, more importantly, to
voice as feedback, i.e., the possibility of informing others about the decline in quality
both before and after exit, thus engendering exit beyond the sole speaker. Id.

2006] Moderating the Rein over Software Users 191

lobbying.32 While these two types of voice are related, and both
may spring from the same message, these two categories structure
my analysis.33

The origination of free software by Stallman was cloaked in
activism. He perceived that software is inherently of insufficient
quality when the source code is not available or shareable, because
in these situations one cannot revise the code or have others revise
it.34 He expressed his view and his indirect voice attracted many
followers. In effect, his “exit”35 to FOSS was “noisy” with indirect
voice because it was tinged, at least in part, by his political
perspective that full self-determination with one’s computer is a
fundamental freedom. In this view, even if one cannot reprogram
the software herself, the opportunity to do so, or to pay someone else
to reprogram it, is critical. The establishments providing this “low-
quality” software are any individual or entity distributing software
without source code and with licensing terms that prohibit free
sharing.36

32 One purpose of this Article is to initially explore the possibility of voice-favoring by
decision makers within the framework of Exit, Voice, and Loyalty in the context of
FOSS. This Article puts aside First Amendment theory. However, I acknowledge that
First Amendment theory offers other, potentially more important reasons for voice-
favoring. The reasons flowing from the exit and voice framework are additive.

33 The literature shows classifications of voice similar to my direct-versus-indirect
bifurcation. See, e.g., Light et al., supra note 6, at 477-78 & fig.1 (noting that scholars
have tended to distinguish between the two types of voice, referring to them as “vertical”
and “horizontal”). Specifically, the authors describe Hirschman’s voice mechanism as
“vertical voice” (i.e., the suppliers) and “horizontal voice” as organization of the
dissatisfied vertical speakers (i.e., the customers). Id. Further, horizontal voice is said to
suffer from various coordination and collective action problems. Id.

34 See STALLMAN, supra note 8, at 119-32 (emphasizing the overall social benefits of
unrestricted access to source code, including greater user ability to evolve applications).

35 I put “exit” in quotes because Stallman was never a proprietary software user.
Stallman, supra note 13, at “The First Software-Sharing Community.” In that sense, he
never exited. In another sense, he exited the software world he inhabited when he was
faced with the prospect of that world no longer sharing source code. Id. at “The Collapse
of the Community.” In Hirschman’s framework, the quality of his experience was about
to change, and exit was the preferable option after voice had failed. HIRSCHMAN, supra
note 1, at 36-37.

36 Software distribution without source code and without the right to share it describes
virtually the entire proprietary software products industry, except for some software
component products. Common examples include software companies like Microsoft,
Oracle, Corel, or Computer Associates, and companies with significant hardware and
software revenues like IBM, Sun, HP, and Apple. It also describes most in-house
software development when confronted with an opportunity to distribute software to third
parties.

192 OREGON LAW REVIEW [Vol. 85, 183

To examine these themes, Part I discusses the FOSS exit
alternative for various software user categories in order to illustrate
the dynamics a customer faces when considering the switch from
proprietary software to FOSS.37 For a few FOSS products, the signs
that user exit is having some disciplining effect, as contemplated in
Exit, Voice, and Loyalty, are unmistakable. For example, in response
to FOSS, Microsoft implemented its “Shared Source Initiative”
program where it allows developers to review the source code for
some of its software.38

Part II explores in more detail the licensing terms defining FOSS
exit from proprietary software and relates these to the voice
expressed in the license. While all FOSS licenses define an exit
opportunity, the licenses vary in the degree to which they express
indirect voice. Voice content is sometimes found in a FOSS license,
but is more often found in related materials, such as the web site
where the license is located.39 With its institutional mixture of exit
and indirect voice, the FOSS license enables users to exit from
proprietary software for some applications, and that very act
becomes direct voice by the user toward the vendor for other
applications. This partial exit has a direct voice effect and makes
more credible future threats of exit in other applications.

This Part also describes the FOSS user’s situation after switching
to FOSS. This is important because the estimation of that situation
helps the user decide whether to make the leap. FOSS has different
development team transparency and user participation opportunities
compared to traditional software. These inform the character of the
FOSS exit because an ongoing relationship often underlies the
connection between many corporate users and their software
suppliers. In traditional software, the ongoing relationship is
typically based on a contract, but often supplemented by
noncontractual communication. In FOSS, the relationship occurs

37 STEVEN WEBER, THE SUCCESS OF OPEN SOURCE 38 (2004) (noting that “the very
success of the proprietary paradigm increased the demand for alternatives”).

38 See Microsoft Corp., Shared Source Initiative Frequently Asked Questions,
http://www.microsoft.com/resources/sharedsource/initiative/FAQ.mspx (last visited Sept.
16, 2006) (noting that Microsoft does not want its Shared Source Initiative to be confused
with “open sourcing”).

39 See, e.g., Eclipse, Eclipse Public License (EPL) Frequently Asked Questions, nos. 9
& 10, http://www.eclipse.org/legal/eplfaq.php (last visited June 10, 2006) (discussing
business and technical advantages to open source software development).

2006] Moderating the Rein over Software Users 193

within a larger community whose practices and norms spring from
the FOSS license.40

Due to a variety of reasons, FOSS licenses carry indirect voice.
Unlike proprietary software end user license agreements (EULAs),
FOSS licenses often receive a lot of attention. It is generally
understood that even as we click “I Accept” to agree to the terms,
very few people read most mass market software and web site
EULAs.41 FOSS licenses, on the other hand, often engender
significant debate, especially if they attempt certification to comply
with the Open Source Definition (OSD).42 The OSD certification
comes from an organization in the open source camp within FOSS.43
It certifies licenses as “open source” against a set of defined criteria.
Thus, there is a chance to debate each license running that gauntlet.
These debates often cover the relative merit of a license, and to what
extent its terms adhere to the tenets of open source. The free
software camp has a similar indirect voice mechanism for licenses.
Its organization, the Free Software Foundation (FSF), maintains a
web site that evaluates whether other FOSS licenses are compatible
with the GPL.44

The most well-known FOSS license is the GPL. This license is
peppered with indirect voice. It extols the virtues and goals of free
software. The GPL is the most widely adopted FOSS license,45 and
at seven pages is relatively short compared to many proprietary

40 McGowan, supra note 7, at 242-43.
41 See Lydia Pallas Loren, Slaying the Leather-Winged Demons in the Night:

Reforming Copyright Owner Contracting with Clickwrap Misuse, 30 OHIO N.U. L. REV.
495, 496-97 (2004) (noting that many contract terms contain “outlandish” provisions,
relying on the fact that many users will not read the terms).

42 See Open Source Initiative, The Open Source Definition,
http://www.opensource.org/docs/definition.php (last visited Sept. 16, 2006) [hereinafter
OSD]. OSI is a nonprofit “corporation . . . certification mark and program.” Open
Source Initiative Home Page, http://www.opensource.org (last visited Sept. 16, 2006)
[hereinafter OSI].

43 See OSI, supra note 42 (noting that the organization is “a non-profit corporation
dedicated to managing and promoting the Open Source Definition for the good of the
community”).

44 Free Software Foundation, Licenses, Various Licenses and Comments About Them,
http://www.fsf.org/licensing/licenses (last visited June 10, 2006) (providing a detailed
explanation of the FSF’s free software classification criteria).

45 Peter Galli, GPL 3 to Take On IP, Patents, EWEEK, Nov. 22, 2004,
http://www.eweek.com/article2/0,1759,1730102,00.asp (noting that the GPL is “the most
widely used free-software license”).

194 OREGON LAW REVIEW [Vol. 85, 183

EULAs. Moreover, Stallman wrote the GPL using the language of
software developers,46 increasing its voice-carrying capability.

Even for users who do not read licenses, using FOSS can create
indirect voice, especially if the user declares that she does not
believe in using proprietary software because it prohibits sharing.47
The public aura around FOSS is that it springs from a different
ideology. If a user of proprietary software declares that she will
henceforth use FOSS, this may make an impression. The non-
adopting user may conclude that the FOSS-adopting user has
switched for the perceived lower software cost, but may also
conclude that the switch is motivated by its value as a social
statement.

FOSS voice, while springing from the licenses and use of the
code, goes beyond such licenses and use. Part III concerns exit and
voice through technologists who also contribute to FOSS projects as
an extracurricular activity apart from their regular employment. This
is not direct exit because the technologists have not left their
employers who use or sell proprietary software. They are simply
choosing to spend their nonwork time at an activity that parallels
their regular job by moonlighting on FOSS. In this case, the
employer is not losing customers, the paradigmatic exit in
Hirschman’s framework.

The extracurricular FOSS moonlighting is a mixture of exit and
voice. It is exit in the sense that it might divert some focus from the
technologist’s regular employment, especially if the technologist is a
programmer, although there could be benefits for the regular
employer through training effects or other consequences. It is voice
because identification with the values of FOSS may be one of the

46 See Robert W. Gomulkiewicz, General Public License 3.0: Hacking the Free
Software Movements Constitution, 42 HOUS. L. REV. 1015, 1032, 1035-36 (2005)
(explaining the way in which the FOSS community interprets the GPL, and arguing
generally for a clarification of the language used in newer versions).

47 Although not my focus, FOSS code can transmit voice beyond the FOSS licenses.
See David McGowan, From Social Friction to Social Meaning: What Expressive Uses of
Code Tell Us About Free Speech, 64 OHIO ST. L.J. 1515, 1520-24 (2003) (arguing that
some, but not all, source code is “a form of expression for purposes of the First
Amendment”). Furthermore, code contains comments, which are nonfunctional
statements the computer ignores. They are for other programmers. Their purpose,
typically, is technical documentation, but they can be styled to promote FOSS principles.
A proprietary software developer studying FOSS source code, even if she never reads the
GPL, may still come to understand that the FOSS programmers have a different
conception about rights in software, software sharing, and the best way to build good
software.

2006] Moderating the Rein over Software Users 195

reasons for working on the FOSS project. The literature suggests
various reasons why FOSS contributors make the effort. Non-voice
reasons exist, such as career advancement, where the reputation
earned or skills learned on the FOSS project provide future career
opportunity.48 But identification with the values or community of
FOSS is often part of the contributor’s story.49 Such identification
has voice-carrying potential. It might be direct voice if the
programmer broadcasts the fact of her extracurricular activities, and
due to her interest in FOSS she seeks to persuade management to use
more FOSS, or, if the company is a software provider, to release
code as FOSS (which may also require transitioning the company to
a different business model).

Beyond exit and voice, Hirschman’s framework includes loyalty,
which arises most plausibly when exit is minimally effective or
unavailable and voice has noticeable impact.50 Loyalty, while
related to the other two mechanisms, is the most amorphous of the
three mechanisms in Hirschman’s framework. It is a broad rubric:
someone for some reason stays and provides feedback.51 In the job
satisfaction context, scholars have extended Hirschman’s framework
by adding a fourth element: neglect, as an alternative to loyalty.52 In
both neglect and loyalty, the employee remains with her employer.
But, in a state of neglect, the employee gives less than her best effort

48 See Josh Lerner & Jean Tirole, The Simple Economics of Open Source 14-15 (HBS
Finance Working Paper No. 00-059, 2000), available at http://ssrn.com/ abstract=224008
(discussing the “career concern incentive” literature, and identifying the “signaling
incentive” that many open source programmers value, such as high visibility, significant
impact, and readily accessible information regarding project performance).

49 See E. Gabriella Coleman, Three Ethical Moments in Debian 2 (Sept. 15, 2005),
available at http://ssrn.com/abstract=805287 (arguing that “[FOSS] projects are sites for
a series of important ethical transformations”). See also Dan M. Kahan, The Logic of
Reciprocity: Trust, Collective Action, and Law, 102 MICH. L. REV. 71, 71-73, 92-98
(2003) (using a theoretical framework designed to counter the central tenets of Mancur
Olson’s book, The Logic of Collective Action, to argue that individuals will contribute to
goods that benefit a group to which they belong, and using the example of open source
software, which has the “same individual motivations that generate reciprocal intellectual
production within both the university and commercial firms that emulate the university
model” to establish his premise).

50 HIRSCHMAN, supra note 1, at 34, 77-78, 80, 83.
51 See Laver, supra note 31, at 471, 477-81 (noting the difficulties with cabining

loyalty, and that the exit and voice frameworks compress two dichotomies into one:
“These two choices are those between Exit and Stay and between Voice and Silence”).

52 Caryl E. Rusbult et al., Impact of Exchange Variables on Exit, Voice, Loyalty and
Neglect: An Integrative Model of Responses to Declining Job Satisfaction, 31 ACAD.
MGMT. J. 599, 601 (1988).

196 OREGON LAW REVIEW [Vol. 85, 183

or her job satisfaction is less than that in the condition of loyalty.
The extracurricular FOSS contributor can be characterized to fit this
extended version of the basic framework: the dissatisfied
technologist seeks indirect exit from the state of neglect by after-
hours contributions to FOSS projects.

Moving beyond the extracurricular FOSS contributor, Part IV
describes how both the free software and open software camps
engage in general activism through advocacy, license enforcement,
and lobbying. Groups in both FOSS camps evangelize FOSS in their
own ways. For the free software camp, Stallman’s self-proclaimed
most important role is no longer to program FOSS but to evangelize
the free software philosophy.53 The open source camp has Eric
Raymond, whose writings about FOSS are well-known, and who
also travels and speaks about FOSS.54 The open source camp also
has many corporate representatives. These are individuals who are
employed by companies such as IBM or Red Hat with the
responsibility of interfacing with the various FOSS
subcommunities.55 This corporate activism for FOSS tends to
emphasize the open source camp’s approach.

Beyond general activism, both camps actively enforce FOSS
licenses and lobby government. The enforcement actions function as
a form of FOSS advocacy, thereby carrying indirect voice. Thus far,
they have rarely resulted in litigation in the courts. The FSF has
been active in GPL license enforcement. An affiliate of the FSF,
Professor Eben Moglen of Columbia Law School and general
counsel of the FSF, was involved in a GPL enforcement action that
produced one of the few United States court cases mentioning the
GPL.56 The enforcement actions generally target companies who are

53 Richard Stallman, Free Software: Freedom and Cooperation, Presentation to the
University of Pittsburgh ACM Chapter (Apr. 7, 2005) (author’s notes of presentation on
file with author).

54 See Eric S. Raymond, Eric S. Raymond’s Home Page, http://www.catb.org/~esr
(last visited July 4, 2006).

55 See, e.g., Open Source Business Conference, Biography for Stephen Mutkoski,
http://www.idgworldexpo.com/live/13/events/13SFO06A/conference/bio//CMONYA00
BDZ4 (last visited June 10, 2006) (describing Mutkoski as a senior attorney with
Microsoft Corporation whose responsibilities include a variety of external interfacing
activities with the open source community).

56 See Declaration of Eben Moglen in Support of Defendant’s Motion for a
Preliminary Injunction on Its Counterclaims at 3-9, 11, Progress Software Corp. v.
MySQL AB, 195 F. Supp. 2d 328 (D. Mass. 2002), available at http://www.gnu.org/
press/mysql-affidavit.pdf [hereinafter Moglen Declaration].

2006] Moderating the Rein over Software Users 197

using GPL protected software and who have not provided the source
code or who are otherwise violating the GPL’s software freedom
conditions.57 They often receive coverage by the specialized press, a
potential voice channel in Hirschman’s framework.58 Additionally,
some FOSS activism blossoms into lobbying. In Europe, for
example, FOSS groups were influential in lobbying the European
Union Parliament against a proposal related to software patents.59

Each aspect of exit and voice catalogued in Parts I through IV
reflect the passionate politics and unique economics characterizing
FOSS. User exit from proprietary software triggers the voice
embedded in the license. Extracurricular FOSS contributors can
quietly protest by working on projects on their own time, while
FOSS advocates actively marshal the movement’s voice in a variety
of ways. These intertwined and reinforcing mechanisms are an
important part of the FOSS story and should be a part of the legal
and policy considerations channeling its future.

I
EXIT FROM PROPRIETARY SOFTWARE TO FOSS

Many FOSS users switched from some proprietary-licensed
software application to a FOSS equivalent, or chose between these
two for a new application. Before the advent of FOSS licensing,
virtually every computer user ran some proprietary-licensed
software. Users had few options to exit the traditional approach to
licensing software, and none of the options represented the paradigm
shift offered by FOSS.

57 Free Software Foundation, Violations of the GPL, LGPL, and GFDL,
http://www.fsf.org/licensing/licenses/gpl-violation.html (last visited June 10, 2006)
(providing a checklist of potential GPL violations, including whether source code is
included in the distribution or not).

58 See HIRSCHMAN, supra note 1, at 4. Moreover, the voice FOSS receives may be
artificially amplified in the press due to the novel characteristics of FOSS licensing.
Peter Holditch, Measuring the Value of Software Infrastructure: What Do You Get for
Your License Fee?, WEBLOGIC DEVELOPER’S J., Feb. 11, 2005, available at
http://wldj.sys-con.com/read/48218.htm (reporting one developer’s view that FOSS
received more attention than warranted for enterprise software applications due to “the
media’s love of controversy”).

59 EU Rejects Controversial Software Patents Proposal, EWEEK, July 6, 2005,
available at 2005 WLNR 10689609 (noting that “open-source leaders such as Linus
Torvalds have spoken out against the . . . [European Union’s computer-implemented
inventions] directive”).

198 OREGON LAW REVIEW [Vol. 85, 183

This Part takes as a given that FOSS offers a unique alternative to
traditionally licensed software. Along with describing the benefits
of typical FOSS licenses, it sketches the characteristics of FOSS
licensing that might cause concern among users. Some of these
characteristics invite uncertainty due to their novel nature and may
omit allegedly beneficial provisions expected in traditional software
licenses. In this context, this Part explores the pros and cons of the
FOSS exit opportunity for software users, including the voice that
results from a user’s exit decision and how that voice might reinforce
exit.

A. The Nature of FOSS Exit

Exit to FOSS manifests in a number of ways. First, a user might
replace an existing application. This occurs, for example, when a
user replaces a Unix or Windows computer with a GNU/Linux
computer. Second, a user might decide whether to use proprietary
software or FOSS in a new application. This second exit opportunity
often occurs with Internet applications. During the initial growth
period of the Internet in the late 1990s and early 2000s, both types of
applications were available for key Internet software components.
FOSS applications captured much of the Internet infrastructure
market as companies took the “exit” option by running FOSS rather
than proprietary-licensed software for these new applications.60
Most such FOSS adopters, however, also ran proprietary software in
the legacy portions of their IT infrastructure.

Most FOSS users run both types of software because FOSS
equivalents to traditional software are only available in a small, but
increasing, number of application categories. For example, the
market for desktop operating systems is a highly visible market but
currently has minimal FOSS penetration.61 Most organizations that
deploy some FOSS have many more computers running Microsoft’s
Windows operating system than computers running a FOSS
operating system. This is because GNU/Linux, the primary FOSS
operating system, currently is not generally perceived by the
marketplace as equivalent to Windows for desktop users.62 To

60 See GLYN MOODY, REBEL CODE: INSIDE LINUX AND THE OPEN SOURCE
REVOLUTION 19, 182 (2001).

61 On the other hand, the desktop represents a large FOSS exit opportunity, restrained
mainly by compatibility issues. See Bulkeley, supra note 21.

62 See generally id.

2006] Moderating the Rein over Software Users 199

overgeneralize, a necessary part of generating an “equivalent”
application for desktop users is to emulate the user familiarity of
Windows and perceived ease-of-use for its interface. Because
GNU/Linux allegedly does not provide equivalent user familiarity or
ease-of-use, the average nontechnical computer user is often
discouraged from adopting the application. Without the perception
that the features and functions are equivalent, exit from Windows to
GNU/Linux for the mass of desktop users has been muted in
comparison to the exit in other application classes. The need for
equivalent (or better) functionality is typically a necessary, but not
sufficient, condition for exit to FOSS.

In response to this need, the number of FOSS-equivalent
applications has grown over time. Precisely why the FOSS
movement responds to fill this need is a very complex and
interesting topic, but one beyond the scope of this Article. The fact
remains that FOSS alternatives have allowed many users to exit
proprietary software in certain parts of their IT infrastructure but not
in others. This raises a second question of equivalent complexity:
which application types are more suitable or inclined to FOSS
development?63 This question is also not my focus, but as with the
first question, it is relevant to the exit opportunities. FOSS
programmers may generate certain application types at a greater rate
than others for motivations not necessarily fully understood.64 If the
projects are successful, they may eventually generate functionality
equivalent to or surpassing proprietary software.65 This creates an

63 Eric S. Raymond, The Magic Cauldron, § 10 (1999), http://catb.org/~esr/
writings/magic-cauldron/magic-cauldron.html (discussing conditions that may determine
when it is beneficial for a software application to be open or closed source).

64 As technology experts, FOSS project leaders may have an intuitive feel for the types
of applications that have the best chance of gaining a user base commensurate with the
developer’s goals. See generally WEBER, supra note 37, at 11-12 (describing the
political economy inquiries raised by open source, including the coordination question:
how do FOSS contributors choose what projects to work on and coordinate within the
project?).

65 The FOSS functionality might be better than the functionality of proprietary
software, but my analysis assumes that it is sufficiently equivalent to be a substitute. See
generally James W. Paulson et al., An Empirical Study of Open-Source and Closed-
Source Software Products, 30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 246,
254-55 (2004) (finding empirical support for only some of the common beliefs about the
differences between FOSS and proprietary software, namely the notions that creativity is
more prevalent in FOSS, and that defects are discovered and repaired more quickly in
FOSS).

200 OREGON LAW REVIEW [Vol. 85, 183

exit option where the switching decision primarily hinges on the
licensing differences and the user’s switching costs.

As equivalent FOSS applications pop up, there are typically some
early adopters using these applications. In the case of FOSS, the
software technology is often not the revolutionary aspect of the
FOSS value proposition. Rather, the innovation is in the licensing
terms. Some commentators have suggested viewing informational
assets such as software as a bundle of benefits, where the software
functionality is commingled with the licensing terms in the user’s
evaluation.66 Even this view applies in my analysis because I intend
to examine the case where the software functionality of FOSS and
proprietary licensed software is roughly equivalent.

In Hirschman’s Exit, Voice, and Loyalty framework, users choose
the exit opportunity when the quality of the incumbent firm’s
product declines beyond their tolerance.67 The subtitle to the book
illustrates this, declaring that the framework is designed to help
understand “Responses to Decline in Firms, Organizations, and
States.”68 My analysis characterizes the quality gap as the

66 See Robert W. Gomulkiewicz, The License Is the Product: Comments on the
Promise of Article 2B for Software and Information Licensing, 13 BERKELEY TECH. L.J.
891, 896, 899 (1998) (discussing how mass market licenses provide software users with a
variety of rights, sometimes more than the “user would have acquired had the user simply
bought a copy of the software, including reproduction, derivative works, and distribution
rights”).

67 See HIRSCHMAN, supra note 1, at 4, 24-25, 36, 47-49. From this basic observation
about what triggers exit, Hirschman evaluates a range of situational and structural factors
that influence the availability and effectiveness of exit as a force that disciplines a firm
from a recoverable lapse in quality. See id. at 4, 24-25, 34-43. One of Hirschman’s
fundamental points is that, while the standard economic model is perfect competition,
that condition is not predominate in competitive markets. Id. at 21-25. Exit is the
paradigmatic, optimal choice for competitive markets. This observation, however, is
Hirschman’s take-off point; since so many markets are not perfectly competitive, exit is
comparatively less effective and this opens the analysis to consideration of the voice
mechanism. See id. at 25-27, 27 n.7, 29. Scenarios Hirschman discusses include the case
where products are highly differentiated, or where customer preferences are highly
attuned to product particulars. See, e.g., id. at 48-52. Both descriptions are often
applicable to software products, particularly to “back-office” IT infrastructure software.
With a wide variety of available products, quality may have to decline much more than in
a competitive market before a customer will switch. See id. With software, this often
occurs due to the dominant effects of switching costs or network effects. The quality
preference of Hirschman’s framework is, in part, the lock-in effect traditionally discussed
in reference to software.

68 Hirschman notes that exit and voice may work better in tandem when a firm’s
customers have a range of quality elasticity preferences and a differing proclivity to
notice a quality decline, that is, when there are some alert and inert customers. See id. at
24, 32, 48, 63-64. See also Laver, supra note 31, at 465 (discussing generally the

2006] Moderating the Rein over Software Users 201

differences between traditional licensing and FOSS licensing.69 I
put aside significant software functionality differences by assuming
an equivalent FOSS offering.

Using this assumption, I analyze three separate categories of
users: free software advocates, open software advocates, and
corporate users.70 For each of these three groups, I inquire: (1) in
what sense would the user understand “quality decline” in software
licensing; (2) what key FOSS licensing terms produce the attraction
that makes FOSS an attractive exit; and (3) what role might voice
play in that exit? This inquiry helps explore the role of exit and
voice in user FOSS adoption, but the questions it poses cannot be
answered in an empirically verifiable way. While I will suggest my
sense of the issues posed by these inquiries, the questions
themselves, and the structural points they highlight, are more
important.

1. Exit for Free Software Advocates

As the first and foremost free software advocate, Richard
Stallman invented free software through his rebellion against
proprietary-licensed software. To free software advocates, “quality
decline” in software began a long time ago when proprietary

different ways in which consumers react to changes in a product’s quality). If too many
customers exit at once, the firm cannot recover, but if a few exit (enough to be noticeable
by management), complemented by alert and inert customers giving voice, a dual
disciplining effect is created. See HIRSCHMAN, supra note 1, at 24, 38. Moreover, the
tendency to give voice is increased when dealing with costly or durable goods. Id. at 40-
41. Enterprise and platform software applications are usually classified as differentiated
and durable goods.

69 Saying that a quality “gap” arises from licensing differences sidesteps the question
of defining quality. Hirschman notes that there is an alternative method to specify
product quality variations: calculate a “price equivalent.” See HIRSCHMAN, supra note
1, at 48. But for purposes of this Article, following Hirschman’s treatment, quality is
conceptualized as a rough rubric with both subjective and objective elements. See id. at
50-53, 54 & n.8, 141-43, 144 & n.4, 145. See also Helen Hershkoff & Adam S. Cohen,
School Choice and the Lessons of Choctaw County, 10 YALE L. & POL’Y REV. 1, 23
(1992) (reflecting on Hirschman’s theory of consumer behavior as it relates to product
quality).

70 I exclude one large class of users from the taxonomy: individual nontechnical
users. In the three groups I taxonomize, technologists are assumed to occupy the relevant
authority positions. Some of the discussion for these three groups will apply to
nontechnical individuals, but their grouping in the user population does not provide a
clear organizational vehicle for the analysis, especially since most FOSS use is under the
purview of technologists. Moreover, nontechnical users, to the extent they use FOSS, are
more likely to have done so under decision processes that are not strategic in the sense
that this Article seeks to explore.

202 OREGON LAW REVIEW [Vol. 85, 183

licensing became the commercial norm.71 The commercial approach
often keeps the source code secret, charges for use, and licenses only
a defined field, type, or range of use. Moreover, further
development or self-help is not available or feasible. Without the
source code, a user cannot readily modify the code or have someone
other than the licensor modify it. All these proprietary software
characteristics were antithetical to quality for free software
advocates. Therefore, the FOSS license that started the movement,
the GPL, is inapposite to each proprietary characteristic.72

The GPL’s terms are a quality-indictment of proprietary software.
For this group of users, software should come with source code and
be unhindered by royalty charges as to its use.73 Moreover, the
source code should continue to be open and free as it evolves
through future development.

This last point explains much of the rest of the GPL. The license
uses the rights of copyright to implement a set of conditions
attempting to ensure permanence for source code availability and
anti-royalty provisions, as well as to resist other threats to the FOSS
paradigm. Upon a distribution of the software, the GPL requires that
a distributor provide the source code, not charge royalties, and
reapply the GPL’s terms to downstream licensees for the original
code and other software sufficiently intermingled with the original
code.74 The full detail of these conditions is not critical to the
analysis here. They generally provide the effect sought: a mode of
software licensing that preserves the code’s form to the preferences
of the free software advocates.75

71 See MOODY, supra note 60, at 19, 26-29 (describing the steps taken by Richard
Stallman initially to develop the GNU project and the GPL).

72 Id. at 26-29 (quoting Stallman as saying, “If I had been developing proprietary
software, I would have been spending my life building walls to imprison people”).

73 Free Software Foundation, The Free Software Definition, http://www.fsf.org/
licensing/essays/free-sw.html (last visited June 10, 2006) (defining free software by
delineating the four kinds of freedom necessary for the software to be free as “a matter of
liberty”: (1) “freedom to run the program”; (2) “freedom to study how the program
works, and adapt it to your needs”; (3) “freedom to redistribute copies so you can help
your neighbor”; and (4) “freedom to improve the program, and release your
improvements to the public, so that the whole community benefits”).

74 GPL, supra note 7, at 1-3, 6.
75 This Article accepts as a premise, without claiming that it is proven, that the

licensing system works well enough to provide the exit opportunity. However, there are
various issues of doctrine that are not necessarily well settled within FOSS licensing. See
McGowan, supra note 7, at 289-302 (discussing doctrinal questions related to a variety of
issues, including assent, privity, term, termination, and assignment).

2006] Moderating the Rein over Software Users 203

The GPL’s substantive license terms fashion the exit opportunity
Stallman desired. In addition, the license advertises the purpose,
philosophy, and nature of that exit. The success of its substantive
terms may be equaled or surpassed by its precatory language
expressing the indirect voice of the FOSS movement. It has been
labeled by third parties and the FSF as the “constitution” of the
FOSS movement.76 Any number of quotes from the GPL would
demonstrate its constitutional, indirect voice-carrying character, but
the first two sentences of the preamble will suffice:

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General
Public License is intended to guarantee your freedom to share and
change free software—to make sure the software is free for all its
users.77

In Hirschman’s framework, the GPL is an institutional
arrangement that mixes exit and voice, enabling both to operate on
users of proprietary software.78 Early in his book, Hirschman
conceptualizes voice in a narrow way: the message of current
customers who complain about quality decline but have not yet
switched.79 Since most FOSS users also use proprietary software,
under this narrow definition of voice their exit in one application
class will likely generate voice to their proprietary software
providers in other application classes through communications
typical of the ongoing vendor-to-customer relationship.80

76 Rod Dixon, Breaking into Locked Rooms to Access Computer Source Code: Does
the DMCA Violate a Constitutional Mandate When Technological Barriers of Access Are
Applied to Software?, 8 VA. J.L. & TECH. 2, ¶ 106 n.257 (2003),
http://www.vjolt.net/vol8/issue1/v8i1_a02-Dixon.pdf; Li-Cheng (Andy) Tai, The History
of the GPL (July 4, 2001), http://www.free-soft.org/gpl_history; Richard Stallman &
Eben Moglen, GPL Version 3: Background to Adoption,
http://www.fsf.org/news/gpl3.html (last visited Sept. 16, 2006).

77 GPL, supra note 7, at Preamble.
78 See HIRSCHMAN, supra note 1, at 33-34, 124 (illustrating the “see-saw relationship

between exit and voice” by pointing to the many citizen complaints about quality and
services in Soviet Russia). FOSS licenses generally enable exit from proprietary
software in ways analogous to Tim Wu’s application of peer-to-peer file sharing (i.e.,
enabling certain groups to organize and thus avoid copyright law). See Wu, supra note
29, at 697-709. In Wu’s application, the code is software; in my analysis, the code is
legal code in the FOSS license. Moreover, the FOSS license provides coordination
benefits that enable FOSS users and developers to coalesce around the software with a
web of interlocking incentives that to some degree limit collective action problems.

79 See HIRSCHMAN, supra note 1, at 4.
80 The relational aspects of software vendor-to-customer engagements can be quite

entangled. See Franklin G. Snyder et al., Relational Contracting in a Digital Age, 11

204 OREGON LAW REVIEW [Vol. 85, 183

Hirschman later broadens his concept of voice to include the signal
that occurs upon customer exit and general activism by former
customers.81 In this latter voice characterization, which I call
indirect voice, the GPL seems a particularly important vehicle.

In a noisy, voice-laden way, the GPL defines the exit alternative
the free software advocates desire. It provides software with
relatively unfettered functional freedom so that users can tinker with,
or exercise full control over, the source code if they wish. The terms
also make it relatively easy for a user to have others modify the
software for her. The license is universally available via the Internet
through its posting, with commentary, on the FSF’s web site.82 Its
preamble and other provisions express the voice that springs from
that group’s values, politics, and preferences.83

The indirect voice expressed in the GPL also recruits other users
to adopt FOSS. This makes the exit more attractive in both the
political and economic sense. As like-minded FOSS users build
their community, they enjoy the social satisfaction of solidarity with
an increasingly numerous group. Due to the effects of network
economies, an increasing user base infuses greater value into the
software and the FOSS licensing method. Considering these diverse
effects, the role of indirect voice in the exit process of free software
advocates would seem to be substantial, perhaps even predominant
in the sense that the values and ambitions in the free software
message are surely a critical part of engendering the code
contributions that launched the FOSS movement in the first place.84
Parts of the FOSS phenomenon have taken their own trajectory, but
there is no doubt that the free software advocates are the

TEX. WESLEYAN L. REV. 675 (2005) for a discussion suggesting analysis using relational
contracts literature. This panel also examines, in parallel, relational contract theory in
light of the “vast changes wrought by the information revolution.” Id. at 678. Enterprise
software typically provides a business-critical function. Most users purchase ongoing
maintenance and support, and sometimes a base software product or technology is
modified to suit a customer’s unique needs. It is common for enterprise software
suppliers to have personnel in the customer’s facility or a remote presence on the
customer’s computers. These entanglements provide ample opportunity for the user to
exercise voice with the supplier, and in particular to show the proprietary software
supplier that the customer is testing FOSS in some part of its operation.

81 See HIRSCHMAN, supra note 1, at 22-25, 35 n.7, 37-38.
82 Free Software Foundation, supra note 44.
83 See GPL, supra note 7, at Preamble.
84 See MOODY, supra note 60, at 26-30.

2006] Moderating the Rein over Software Users 205

fountainhead of the licensing exit device and the indirect voice that
amplifies it.85

2. Exit for Open Software Advocates

The line between open source software advocates and free
software advocates is not bright. Although the categorization is
somewhat tenuous, I analyze each group separately to highlight the
open source group’s emphasis on exit as compared to voice. Both
mechanisms are important for both groups, but open source
advocates have a focus that emphasizes exit—i.e., open source
development as a superior way to generate superior software. Linus
Torvalds, the leader of the Linux kernel FOSS project, exemplifies
this pragmatic thrust. The work of the Open Source Initiative (OSI)
also seems in this vein, as its web site describes:

The basic idea behind open source is very simple: [w]hen
programmers can read, redistribute, and modify the source code
for a piece of software, the software evolves. People improve it,
people adapt it, people fix bugs. And this can happen at a speed
that, if one is used to the slow pace of conventional software
development, seems astonishing.86

Since FOSS exit generally is more likely when equivalent or
better FOSS alternatives exist, the open source advocates’ role has
been to promote licensing terms that facilitate the process of
producing superior software. Some of this work occurs through the
Open Source Definition (OSD), which defines criteria against which
the OSI evaluates and certifies licenses. The OSD license criteria
share many similarities with the GPL. The OSI categorizes the GPL
as an “open source” license. One difference, however, is that unlike
the GPL, the OSD does not require that a license demand that
modifications be distributed under the same terms. The OSD merely
says that a license must allow such a condition, but a license need
not have it.87 In Hirschman’s framework, this difference means that
an OSI-compliant license that does not demand reapplication of its
terms has less voice-carrying potential because it will not necessarily
propagate along with the code. Another license with nonconflicting
substantive terms will suffice. This is a structural observation, not

85 See id.
86 OSI, supra note 42.
87 OSD, supra note 42 (“The license must allow modifications and derived works, and

must allow them to be distributed under the same terms as the license of the original
software.”).

206 OREGON LAW REVIEW [Vol. 85, 183

an empirical one. It may be that most licenses require reapplication
of their terms like the GPL, but the OSD’s relaxation on this point
indicates that it deemphasizes voice in comparison to exit.

3. Exit for Corporate Users

Together, both free software advocates and open source software
advocates have driven a movement that benefits many corporate
software users. While a marketplace debate is ongoing about the
cost of ownership for FOSS versus proprietary software, many
reports show increasing FOSS use by corporate IT departments.88
Their FOSS adoption is perhaps the most important exit inquiry in
this section.

To clarify the taxonomy, by corporate users I mean companies
who use FOSS in their operations, not companies such as IBM who
have invested in the FOSS movement in order to sell complementary
products and services. I count companies such as IBM and Red Hat
in the taxonomy as open source advocates. They are instrumental in
furthering the exit opportunity FOSS provides to a much wider class
of users: their corporate IT department customers.

88 See, e.g., Martin Butler, Hidden Costs of Open Source, IT WEEK, July 21, 2004,
http://www.itweek.co.uk/itweek/comment/2086191/hidden-costs-open-source
(speculating that open source has “been hijacked by commercial enterprises” and users
should investigate its true costs); Steve Hamm, Linux Inc.; Linus Torvalds Once Led a
Ragtag Band of Software Geeks. Not Anymore. Here’s an Inside Look at How the
Unusual Linux Business Model Increasingly Threatens Microsoft, BUS. WK., Jan. 31,
2005, at 60 (arguing that Linux is a more affordable option than the proprietary software
Windows).
 Various reports reveal mixed FOSS and GNU/Linux growth rates. While some show a
continued acceleration, others show the acceleration slowing down. See, e.g., Charles
Ferguson, How Linux Could Overthrow Microsoft: The Open-Source Movement Is the
Largest Threat the Software Giant Has Ever Faced. Does Bill Gates Have a Plan?,
TECH. REV., June 2005, at 69, available at 2005 WLNR 8789992 (discussing IDC
surveys that indicate revenues from Linux servers are growing at more than 40%
annually, whereas server revenues for Windows are growing at less than 20% per year);
Hamm, supra, at 60 (referring to a Forrester Research, Inc. survey that indicated that
52% of business users are switching from Windows to Linux servers); Jennifer Mears &
Ann Bednarz, Branching Out: Comfortable with Linux, Organizations Look for
Opportunities to Employ Open Source Tools, NETWORK WORLD, July 4, 2005, at 15,
available at 2005 WLNR 10973666 (citing a Forrester Research, Inc. survey of 128
information technology decision makers that revealed nearly 75% use open source or
Linux now, or plan to within the next year); Darryl K. Taft, Slew of Fears Slow Open-
Source Uptake, EWEEK, Jan. 25, 2005,
http://www.eweek.com/article2/0,1759,1753474,00.asp (discussing a SourceLabs, Inc.
study that attributes the slow adoption of open source beyond Linux to customers’
concerns over support and maintenance).

2006] Moderating the Rein over Software Users 207

FOSS presents the corporate user with a set of pros and cons that
is unique and unprecedented in the history of computing, making
FOSS a new form of exit from proprietary software applications.
Switching to FOSS may create some costs for corporate users.
However, FOSS may overcome those costs because its most popular
licenses require a use-price of zero. FOSS may require greater self-
reliance and technical savvy, but there are no prohibitions on hiring a
consultant to revise or optimize the software.

There is sometimes misunderstanding about what a corporate IT
user must or must not do with such modifications. Unless the
corporate user distributes the software, in the copyright meaning of
that term, the FOSS license typically does not require adherence to
the full set of conditions. The GPL uses this approach, meaning that
a company can revise and optimize FOSS for internal use without
making the source code for those changes available. Corporate users
may view this as a positive. It lowers their cost of exit to FOSS
because they are not forced to expend resources on contributing code
back to the community as long as they do not distribute it.89
Contrasted with this positive, an opportunity cost for using FOSS
exists, as modifications cannot typically be privatized for
incorporation into a commercially licensed product. Thus, corporate
users may have to partition and segregate software and their IT
infrastructure to avoid intermingling FOSS and other software, if
they want to preserve future opportunities to externally
commercialize the other software. This license management and
software tracking is already a part of many IT department
procedures.90

Given the pros and cons associated with FOSS, the anti-royalty
license term might dominate at the time of an exit decision for
corporate users, especially since companies are always interested in
operational cost reduction. On the other hand, the source code
availability term might dominate if the exit motivation is to escape

89 Conditions of a FOSS license in use under the GPL typically apply only if the FOSS
is distributed outside the company. For example, changes Google makes to its
operational open source software are not available to the general public. See Google’s
Summer of Code Pays Students to Do Open Source, DATAMONITOR, June 9, 2005,
available at 2005 WLNR 9127797.

90 Cary H. Sherman & David M. Hornik, How to Avoid the Software Police and What
to Do When They Knock on Your Door, 369 PRACTISING L. INST. 495, 534-37
(describing software asset management and tracking programs and alternatives).

208 OREGON LAW REVIEW [Vol. 85, 183

the control a proprietary software vendor wields over its licensees.91
In addition to these two questions, there is the question of voice. Is
the exit motivated in response to indirect voice from the FOSS
community? Is the exit designed to provide direct voice to the
corporate user’s proprietary software providers? Does the exit have
the voice effect of making future exit more credible, as a threat, and
as a disciplining force on the proprietary software vendors? All of
these questions express a possible role for voice in the corporate
user’s view of FOSS alternatives. The next two sections explore
these questions further.

B. Influences That May Chill Exit to FOSS

While FOSS licenses offer advantages, they also omit standard
proprietary license provisions touted as beneficial. The two
foremost examples are warranties and indemnification.

Warranties for most mass-market software products typically
provide minimal benefit. For example, the software might be
warranted to be in accord with its manuals or a general description,
and the warranty often only provides for return of the purchase price
in the event of breach.92 Warranties for high-end software products
costing tens or hundreds of thousands of dollars are often much more
substantial. These are sometimes negotiated in the procurement
transaction and can provide important protections for corporate
users. In contrast, as a result of the FOSS-distributed community
development model, most FOSS licenses offer no warranty.

Traditional software licenses often indemnify the licensee if a
claim of intellectual property infringement is brought against the

91 See Ferguson, supra note 88 (stating that proprietary software locks in its users so
they become a “hostage to the software vendors whose products they buy”).

92 See, e.g., EMC Software, Documentum Software License Agreement,
http://software.emc.com/about_us/legal/Documentum_Software_License.pdf (last visited
June 10, 2006) (“EMC warrants that the Software will perform substantially in
accordance with the Documentation for the ninety (90) day period following shipment of
the Software when used on the recommended operating system and hardware
configuration and in accordance with the Documentation. Non-substantial variations of
performance from the Documentation does not establish a warranty right. Any claims
submitted under this section must be submitted in writing to EMC within the specified
warranty period. EMC’s sole and exclusive obligation for warranty claims shall be to
make the Software operate as warranted or, if EMC is unable to do so, to terminate the
license for such Software and return the applicable license fees paid to EMC for the
applicable Software.”).

2006] Moderating the Rein over Software Users 209

licensee for her use of the product.93 These protections are
important for corporate users. Most FOSS licenses do not contain an
indemnity provision. Only in the few years before this writing did
any indemnification options appear for FOSS.94 Along with
warranty protection, indemnification was something corporate users
would typically not expect to receive with FOSS. The question this
raises is to what degree does omission of these two protections
diminish a corporate user’s taste for FOSS?

Another potential chilling effect for FOSS generally, and
specifically for its flagship, GNU/Linux, is the SCO litigation. The
details of this situation are well documented elsewhere,95 so I
recount them here only briefly. SCO’s predecessor licensed source
code to IBM. In a case filed in March 2003, SCO claimed that IBM
contributed some of that code to the Linux kernel, thereby violating
the original license contract and its trade secret provisions.96 If true,

93 Typically, indemnification clauses in enterprise or corporate proprietary licensed
software are applied to the product or software in unmodified form, and do not cover use
of the product or software in a greater system if that greater system infringes a patent.
Sometimes corporate users negotiate for the rights to some or all of the source code in a
product. Modifying the original could create a patent-infringing technology even if the
product was infringement-free as originally shipped. See discussion infra Part IV.C.

94 For example, FOSS distributors HP, SuSE, and JBoss only provide indemnification
to their customers under certain specific circumstances. See Phil Hochmuth, HP to Linux
Users: We Got Your Back. But Does It Really?, NETWORK WORLD, Oct. 1, 2003,
http://www.networkworld.com/newsletters/ linux/2003/0929linux2.html (discussing
HP’s commitment to indemnify certain Linux customers); HP, Open Source and Linux
from HP, https://h30201.www3.hp.com/default.asp (last visited July 12, 2006) (providing
information and the opportunity for customers to register for the indemnification
process); JBoss Enhances Indemnification Program, EWEEK, Apr. 5, 2005, available at
2005 WLNR 7378344 (announcing JBoss’s plans to enhance its indemnification
coverage to include “unlimited coverage for defense, repair and replacements involving
any intellectual property claims”); Robert McMillan, Novell to Indemnify SuSE
Customers, NETWORK WORLD, Jan. 12, 2004,
http://www.networkworld.com/news/2004/0112noveltoin.html (revealing Novell’s plans
to indemnify SuSE Linux Enterprise 8 customers).

95 See, e.g., Nina L. Chang, Comment, No GNU Is Good G’News for SCO:
Implications of SCO v. IBM, 9 INTELL. PROP. L. BULL. 47, 47 (2004); Kerry D.
Goettsch, Recent Development, SCO Group v. IBM: The Future of Open-Source
Software, 2003 U. ILL. J.L. TECH. & POL’Y 581, 583-84; Andrew LaFontaine, Comment,
Silicon Flatirons Student Writing Contest 2005: Adventures in Software Licensing:
SCO v. IBM and the Future of the Open Source Model, 4 J. ON TELECOMM. & HIGH
TECH L. 449, 468-80 (2006); see also The SCO v. IBM Info Website,
http://sco.iwethey.org (last visited July 7, 2006) (providing updates and a detailed
summary of the litigation). Another site generally following the litigation is available at
http://www.groklaw.com.

96 See Complaint at ¶ 1, Caldera Systems, Inc. v. Int’l Bus. Machs. Corp., No.
2:03cv0294 (D. Utah Mar. 6, 2003), available at http://sco.tuxrocks.com/Docs/IBM/

210 OREGON LAW REVIEW [Vol. 85, 183

this would mean that unauthorized copies of the code would be in
the hands of many users of Linux kernel based operating systems,
allowing SCO to bring copyright infringement claims against such
users, which it did in two cases.97

Ever since the SCO case began, new users continued to switch to
GNU/Linux, although reports differ on whether or to what degree the
case slowed or chilled user adoption.98 Many explanations are
possible for the continuing growth in use, but it is a notable
phenomenon given the shadow the case casts on intellectual property
rights in GNU/Linux. Users might not have known about the case,
or they may have felt that the case was weak. The FOSS value
proposition for GNU/Linux may have swamped any risk users felt
from the SCO litigation. Another potential factor sustaining user
adoption despite the case may be indirect voice, where users switch
even with knowledge of the SCO-related risks based in part on their
response to the FOSS message.99 The SCO litigation related to only
the Linux kernel, but it also raised questions about the intellectual
property pedigree of FOSS more generally. These concerns have
evoked some revised practices in the licensing and use of FOSS,100
but they generally have not slowed down the FOSS bandwagon or its
effects.

complaint3.06.03.html [hereinafter SCO Complaint]; Answer at ¶ 1, Caldera Systems,
Inc. v. Int’l Bus. Machs. Corp., No. 2:03cv0294 (D. Utah Apr. 30, 2003), available at
http://www.groklaw.net/pdf/Doc-13.pdf [hereinafter IBM Answer].

97 See David Bank, SCO Broadens Its Attack on Linux; Suits Against AutoZone,
DaimlerChrysler Claim Breach of Rights on Unix, WALL ST. J., Mar. 4, 2004, at B5.
Although both cases stem from Linux use, they are different. SCO’s suit against
AutoZone is in federal district court, based on copyright infringement. Complaint at 6-7,
¶¶ 20, 22, SCO Group, Inc. v. Autozone, Inc., No. CV-S-04-0237-DWH-LRL (D. Nev.
Mar. 3, 2004), available at http://www.thescogroup.com/scoip/lawsuits/
autozone/20040303_AZ_complaint.pdf. The suit against DaimlerChrysler is in Michigan
state court, based on a license agreement SCO has with DaimlerChrysler. Complaint at
5, ¶ 20, SCO Group, Inc. v. DaimlerChrysler Corp., No. 04-056587-CK (Mich. Cir. Ct.
Mar. 3, 2004), available at http://www.thescogroup.com/scoip/
lawsuits/daimlerchrysler/Complaint-and-Jury-Demand-March-3,2004.pdf. SCO alleges
that DaimlerChrysler is in breach for failing to provide a certification that it is not in
violation of the agreement’s provisions due to its use of Linux. Id. at 7, ¶¶ 27-28.

98 See Ferguson, supra note 88, at 69; Hamm, supra note 88; Mears & Bednarz, supra
note 88, at 16; Taft, supra note 88; Vetter, supra note 7, at 643 n.231.

99 See Laver, supra note 31, at 465-67 (discussing voice in the Hirschman framework
as a feedback mechanism that may operate on other users, or the general public).

100 See Linux: Plans Are Being Adopted for Method to Track Updates, WALL ST. J.,
May 25, 2004, at B6 (reporting that in light of the SCO case, Linux kernel developers
would henceforth be asked to submit a “Developer’s Certificate of Origin, [which] is
designed to ensure the correct attribution of submissions to developers”).

2006] Moderating the Rein over Software Users 211

C. Disciplining Effects from Exit to FOSS

One noticeable effect of FOSS has been the various instances of
proprietary-oriented IT companies embracing FOSS in one way or
another. These instances include companies releasing former
proprietary products as open source products,101 and complementary
distributors such as Red Hat and IBM jumping on the bandwagon.102
These effects do not fit directly in the Hirschman framework, which
posits exit and voice as mechanisms that help a firm correct from a
recoverable lapse in “quality.” In my application of the framework,
these examples are more akin to a firm becoming the competition—
which is what happens when a proprietary product is released as
FOSS.

Within the Hirschman framework, however, one can find
examples of the disciplining effects of exit, particularly by looking at
Microsoft’s responses to FOSS generally and GNU/Linux
specifically. These examples are: heightened indemnification, price
discounting, Microsoft’s Shared Source program, and the computer
security issue.103

Once it understood the pros and cons of FOSS licensing,
Microsoft improved its indemnification provisions to heighten
customer benefits in its licenses. This occurred in two steps. First,
Microsoft increased indemnification benefits for corporate end
users.104 Later, it extended these protections to its distributors.105
Since most FOSS licenses do not provide indemnification,
Microsoft’s license revisions can be seen in the Hirschman
framework as an improvement in the quality of the joint benefit
arising from the software product and the license.

101 See Hamerly & Paquin, supra note 15, at 197-206, for an explanation of the events
leading up to, and culminating in, Netscape’s decision to release its source code. See
also Don Clark, Sun to Share Source Codes for Some Java Programming: Software for
Server Systems to Be Included in Attempt to Court Users of Linux, WALL ST. J., June 27,
2005, at B5.

102 See supra text accompanying notes 21-22.
103 See infra text accompanying notes 104-13.
104 See Robert A. Guth, Microsoft Extends Legal Protections: PC Makers, Partners

Get Indemnification in Effort to Combat Use of Linux, WALL ST. J., June 23, 2005, at B4
(discussing how Microsoft will provide indemnification to distributors based on the
amount of business they do with Microsoft).

105 See Steve Lohr, Microsoft Will Pay Legal Costs If Technology Partners Are Sued,
N.Y. TIMES, June 23, 2005, at C4 (discussing Microsoft’s plan to extend indemnification
protection to include distributors).

212 OREGON LAW REVIEW [Vol. 85, 183

Indemnification, however, is a legal protection that is only
valuable to the customer if she is sued. As such, customers may not
value it at the time of product evaluation with the same degree of
intensity as other terms, such as price. A commonly perceived
advantage of FOSS is superior price.106 For corporate users, the
price of FOSS is not necessarily zero because most FOSS licenses
allow a distributor to charge for ancillary services, including
distribution costs, aggregation and bundling, ongoing support,
updates, and even additional legal protections.107 Thus, while
GNU/Linux is available for download on the Internet literally free of
charge, many companies pay Red Hat subscription fees for a
package of services related to a copy of Red Hat’s distribution of
GNU/Linux. However, most FOSS distributors can generally
undercharge their proprietary software competitors. This reality has
led to a propaganda battle concerning whether FOSS has a lower
cost of ownership, assuming that more internal company resources
are required to operate and manage FOSS. Given the FOSS price
advantage, one response reported in some sales situations is deep
price discounting by Microsoft as an attempt to dissuade
international customers from exiting to GNU/Linux.108

While price discounting by proprietary vendors relates to the anti-
royalty provision of FOSS licensing, Microsoft’s Shared Source
Initiative might be seen as a response to the source code availability
FOSS license provision. Although Shared Source is not open source
licensing, it allows certain Microsoft customers to examine and
study the source code of Windows and other products.109 The

106 See David Bank, The Revolt of the Corporate Customer: How Companies Are
Squeezing Tech Suppliers to Get a Bigger Bang for Their Software Bucks, WALL ST. J.,
Jan. 17, 2005, at R1 (attributing the reduced price of proprietary software to, in part, the
lower cost of open source software).

107 See Free Software Foundation, Selling Free Software, http://www.fsf.org/
licensing/essays/selling.html (last visited June 10, 2006) (touting the profitability of
distributing free software).

108 See, e.g., Rebecca Buckman, Microsoft’s Malaysia Policy: As Poorer Nations
Push PCs, Software King Lowers Prices in a Bid to Outfox Free Linux, WALL ST. J.,
May 20, 2004, at B1 (discussing Microsoft’s “rock-bottom prices” for computers running
its software in Malaysia); Alisa Tang, Microsoft Will Offer Low-Cost XP in Asia,
SPOKESMAN-REV. (Spokane, Wash.), Aug. 12, 2004, at 9A, available at 2004 WLNR
18303392 (discussing how Microsoft offered a stripped-down version of Windows XP at
low cost to compete in the hopes of preventing users from switching to open source).

109 See Microsoft Corp., Shared Source Initiative, http://www.microsoft.com/
resources/sharedsource/default.mspx (last visited Aug. 16, 2006) (listing the initiative’s
various programs). The Shared Source Initiative program for “Enterprise” customers, for
example, provides that “[l]icensees may read and reference the source code but may not

2006] Moderating the Rein over Software Users 213

program’s goals include enabling customers to better understand
Windows, enhancing product feedback, and facilitating security,
auditing, maintenance, performance tuning, deployment planning,
and internal support.110 These benefits are a subset of the benefits
source code availability provides to FOSS development projects.
The Shared Source Initiative explicitly acknowledges that its goal is
to provide some of the benefits of open source software
development, but within the paradigm of traditional commercial
software development.111 Two related forces triggered this
response: the existence of FOSS alternatives mixed with some actual
exit to those alternatives. In the Hirschman framework, the Shared
Source Initiative (for those Microsoft products to which it applies)
heightens customers’ perceptions of the quality of the Microsoft
products because the definition of what constitutes high quality
software changed under the growing presence of FOSS alternatives
and indirect voice about them.

More generally put, sometimes a product can remain the same, but
external conditions will change customers’ quality perceptions. This
may characterize the deepening concern over computer security.
Computers are increasingly interconnected through physical and
wireless connections to the Internet. This creates a fertile
environment for malware such as viruses and worms to hijack or
disrupt computing resources from any class of users. Malware has
primarily targeted a variety of Microsoft products because their
ubiquity creates the greatest possibility of finding fertile hosts, i.e.,
computers with insufficient protections such as firewalls, antivirus,
and other defensive capabilities.112 In the case of the Microsoft
Internet browser, Explorer, some reports suggest that customers are
switching to a recently available FOSS alternative based on the
perception that the FOSS alternative does not or will not suffer

modify it.” Microsoft Corp., Enterprise Source Licensing Program,
http://www.microsoft.com/resources/sharedsource/ licensing/enterprise.mspx (last visited
July 15, 2006) [hereinafter Enterprise].

110 Enterprise, supra note 109.
111 Microsoft Corp., Basic Principles of Software Source Code Licensing,

http://www.microsoft.com/resources/sharedsource/Articles/MicrosoftandOpenSource.mp
x (last visited July 15, 2006).

112 See Andrew Beckerman-Rodau, Ethical Risks from the Use of Technology, 31
RUTGERS COMPUTER & TECH. L.J. 1, 17 (2004) (noting that Microsoft’s operating
system “is a favorite target of virus creators”).

214 OREGON LAW REVIEW [Vol. 85, 183

malware problems.113 This disciplining effect did not arise from the
FOSS alternative, but the urgency to make proprietary products more
malware-resistant may have greater intensity due to the perception
that FOSS alternatives do not suffer the same malady. A response is
necessary to foreclose exit to the FOSS alternative, whereas without
any alternative, in the Hirschman framework, this might be a “lapse
in quality” against which a firm has insufficient incentive to quickly
correct.

While there may be other disciplining effects from the exit or
threat of exit to FOSS equivalents, these examples show that the
dynamics identified in the Hirschman framework are active in the
interplay between proprietary software and FOSS. Greater
indemnification, price discounting, and Microsoft’s Shared Source
are examples of effects directly engendered by FOSS. Malware
shows how FOSS equivalents, perceived to offer an equivalent set of
functions and features, but without certain other problems, add to the
disciplining effect proprietary firms feel in the face of the malware
problem. These disciplining effects occur because exit is available.
In the case of FOSS, the novel legal landscape has some potential to
chill exit, but such chilling, to the extent it exists, seems at most to
limit the acceleration of FOSS growth rather than forestalling it.
Exit, as described above, is categorized among different types of
users. These camps generate FOSS licensing approaches with
differing mixes of exit and voice.

II
EXIT AND VOICE IN FOSS LICENSES AND PROJECTS

FOSS starts with a license. From the Hirschman perspective, the
license is an institutional mechanism enabling exit and voice. It is

113 Many users have switched to Firefox because they perceive it to offer better
security. However, Firefox is not without security issues. See Firefox Is Heading
Towards Trouble, EWEEK, Mar. 8, 2005, available at 2005 WLNR 3835018 (noting that
Firefox is more secure than Internet Explorer, but still not “perfectly secure”); Antone
Gonsalves, Next Major Firefox Release Delayed, TECHWEB NEWS, July 21, 2005,
available at 2005 WLNR 11486883 (noting that the delay in Firefox’s release was
attributed to trouble “in the release of bug fixes”). By raising the data security issue, I do
not mean to take a position as to whether FOSS or proprietary software is better in this
area. This debate is ongoing, and is not my focus here, other than the role perceptions of
data security play in a user’s satisfaction with specific software applications. See Dennis
Fisher, Open Source: A False Sense of Security?, EWEEK, Sept. 30, 2002,
http://www.eweek.com/article2/0,1759,562220,00.asp (comparing market perceptions of
data security between proprietary software and FOSS).

2006] Moderating the Rein over Software Users 215

primarily based on copyright law but might also address patent
rights. It typically grants, or seeks to clear, intellectual property
rights to the extent possible to allow wide third-party latitude with
the software.114 This latitude includes the right to use, modify, and
redistribute the code. The license facilitates software development
resulting in code with a new, unique economic and social
proposition: free use with available source code, under the condition
that the FOSS requirements are observed and reapplied upon
modification and redistribution.

The preceding Part of this Article provides an overview of the
FOSS exit alternative to illustrate the dynamics a customer faces
when considering the switch. This Part will fill in additional detail
about this alternative from two related perspectives: (1) the license’s
mechanisms that allow exit, and (2) the development team
characteristics a FOSS user can expect in comparison to traditional
proprietary software development. The first perspective, the
possibility of exit, also reflects voice. Sometimes this is indirect
voice in the license, such as comments about the virtues of FOSS.
More often, however, it is the direct voice of an exit threat that a
viable FOSS alternative provides the end-user in dealing with
proprietary software providers. The second perspective is an equally
important component of the FOSS exit alternative. Users have
greater structural mechanisms guaranteeing opportunities to
participate in a FOSS software project as compared to traditional
software development. The relationship between a software vendor
and user is typically ongoing, and the degree of the user’s investment
in the technology determines each party’s relative leverage.

A. License Rights and Language for Exit and Voice

While all four major areas of intellectual property law might be
used to protect software, FOSS licenses always address copyright
law, sometimes address patent law, and occasionally address
trademark law. Post-distribution trade secret protection is
antithetical for FOSS software because the software is usually
supplied with source code.

There are a variety of ways to categorize FOSS licenses, but here
I will use these categories: corporate-style licenses granting

114 See generally LAWRENCE ROSEN, OPEN SOURCE LICENSING: SOFTWARE
FREEDOM AND INTELLECTUAL PROPERTY LAW 103-06, 126-28, 133-36 (2005)
(discussing the way in which FOSS licensure developed and works).

216 OREGON LAW REVIEW [Vol. 85, 183

copyright and patent permissions, the GPL and similar licenses, dual
licenses, and attribution-only licenses. The analysis will not
consider the last category because the license places very minor
restrictions on use of the software and source code. Although some
important FOSS projects operate under attribution-only licenses,
these licenses merely claim copyright and then require that an
attribution statement appear with the code.115 The attribution-only
license does not have the features to fully guarantee the institutional
mechanism carrying exit and voice as I conceptualize these from the
Hirschman framework. The subsections below address each of the
other license categories.

1. Corporate-Style FOSS Licenses

At the time of this writing the Open Source Initiative (OSI) listed
about sixty licenses it deemed compliant with its certification
criteria.116 The Free Software Foundation’s (FSF) list named about
thirty other licenses not on the OSI list, although some were listed to
show that they were not free software licenses.117 These ninety
licenses undoubtedly do not exhaust the list of licenses published or
in use for FOSS.118 Because this section does not need an
exhaustive look at every license to make its points, I will draw
examples from the OSI list. Among the sixty OSI-listed licenses,
about twenty are attribution-only licenses, which I therefore put
aside.

The majority of the forty remaining OSI licenses grant recipients
rights under both copyright and patent law. Many are written in a
style that clearly signals attorney involvement. An overall structural
approach seems to have seeped into many of the licenses, perhaps

115 See, e.g., Apache Software Foundation, The Apache Software License Version 1.1,
http://www.apache.org/ licenses/LICENSE-1.1 (last visited July 15, 2006).

116 Open Source Initiative, The Approved Licenses, http://www.opensource.org/
licenses (last visited July 15, 2006).

117 Free Software Foundation, supra note 44.
118 See Ken Spencer Brown, Open Source Serves Baskin-Robbins–Like Choices of

Software: But It’s Headache, Not a Treat; So Many Licenses Available, Companies
Wrestling with 58 Flavors—and Counting, INVESTOR’S BUS. DAILY, June 30, 2005, at
A04, available at 2005 WLNR 10393503 (suggesting that the patchwork of licenses
could threaten the industry’s growth); Open Source Initiative, Charter for License
Proliferation (LP) Committee of the Open Source Initiative (OSI),
http://www.opensource.org/docs/policy/lpcharter.php (last visited Sept. 16, 2006)
(explaining that OSI has created a committee “to identify and lessen or remove issues
caused by license proliferation”).

2006] Moderating the Rein over Software Users 217

inspired by the licenses Netscape promulgated through the open
source release and management of its browser code.119 Two types of
parties are typically defined: contributors and recipients. Any person
or entity can be a contributor and recipient simultaneously.
Recipients become contributors when they redistribute the software.
Contributors grant a copyright license120 and a patent license121 to
recipients. The licenses are conditional. They grant rights under the
conditions that the recipient makes source code available and does
not charge royalties upon distributing the software. Beyond this
framework, however, additional conditions further define the
character of the FOSS exit alternative presented by these licenses.

Many licenses demand compliance with patent and trademark
terms. Names associated with the FOSS-licensed software, for
example, might not be useable except under certain conditions.122
Noncompliance with this provision might terminate the copyright
and patent permissions granted by the contributor, or all contributors
to the software for the noncompliant recipient. Both the copyright
and patent license rights granted to the recipient may terminate if the
recipient brings a patent infringement suit against other contributors

119 See Mozilla.org, Mozilla Public License Version 1.1, http://www.mozilla.org/
MPL/MPL-1.1.html (last visited July 15, 2006); Mozilla.org, Netscape Public License
Version 1.1, http://www.mozilla.org/MPL/NPL-1.1.html (last visited July 15, 2006).

120 See, e.g., Eclipse, Eclipse Public License Version 1.0, ¶ 2(a), http://www
.eclipse.org/legal/epl-v10.html (last visited July 15, 2006) [hereinafter EPLv1.0]
(“Contributor hereby grants Recipient a non-exclusive, worldwide, royalty-free copyright
license to reproduce, prepare derivative works of, publicly display, publicly perform,
distribute and sublicense the Contribution of such Contributor, if any, and such derivative
works, in source code and object code form.”). In some cases the non-patent grant of
rights is stated more broadly as a license of intellectual property rights. Sun, Common
Development and Distribution License (CDDL) Version 1.0, ¶ 2.1(a),
http://www.sun.com/cddl/cddl.html (last visited July 15, 2006).

121 EPLv1.0, supra note 120, ¶ 2(b). The granting language is as follows:
Contributor hereby grants Recipient a non-exclusive, worldwide, royalty-free
patent license under Licensed Patents to make, use, sell, offer to sell, import and
otherwise transfer the Contribution of such Contributor, if any, in source code
and object code form. This patent license shall apply to the combination of the
Contribution and the Program if, at the time the Contribution is added by the
Contributor, such addition of the Contribution causes such combination to be
covered by the Licensed Patents.

 Id. The term “Licensed Patents” is defined as patents licensable by Contributor and
infringed by the “Contribution alone or when combined with the Program.” Id. ¶ 1.

122 See, e.g., Apple Computer, Inc., Apple Public Source License Version 2.0, ¶
10, http://www.opensource.apple.com/apsl (last visited July 17, 2006) [hereinafter
APSLv2.0] (discussing conditions for use of Apple’s marks in association with the
software).

218 OREGON LAW REVIEW [Vol. 85, 183

or recipients. The reach of this “patent peace” clause varies among
the OSI-listed licenses.123 Some licenses present a broad reach. A
patent suit by a recipient against a contributor or another recipient in
any technology (including a technology wholly unrelated to the
FOSS software) triggers termination of the plaintiff recipient’s
license rights.124 Other licenses are less aggressive. They are
content to terminate the plaintiff recipient’s rights only when the
patent suit is about the FOSS software or related technology.125

Although the corporate-style licenses typically grant both
copyright and patent permissions, they also make clear that third-
party rights may inhibit use of the software. The contributors
disclaim indemnification and other guarantees that the software is
infringement free, especially of patents.126 Some licenses
acknowledge that third parties may hold patent rights that inhibit use
of the software.127 These third parties may not use the software,
and, as a result, there would not be a defense under the “patent
peace” clause that the third parties have granted permission for the
FOSS technology to infringe any claims in any patents held by such
third parties. In other words, if a nonuser third party holds a patent
covering the software, she can prohibit its use or require a royalty.

Some licenses explicitly allow the contributor or recipients to
separately offer fee-based services such as support, updates,
warranty, and indemnification. However, some of these licenses
additionally require the service supplier to indemnify all other
contributors for any service claims.128

123 See, e.g., Sun, Common Development and Distribution License (CDDL)
Description and Rationale, Executive Summary, http://www.sun.com/cddl/
CDDL_why_details.html (last visited July 17, 2006) (discussing the narrowing of the
“patent peace” clause in the CDDL compared to its predecessor license, such that the
narrower clause covers only software released under the license).

124 See ROSEN, supra note 114, at 170.
125 See id. at 171.
126 See, e.g., EPLv1.0, supra note 120, ¶ 2(c) (“As a condition to exercising the rights

and licenses granted hereunder, each Recipient hereby assumes sole responsibility to
secure any other intellectual property rights needed, if any. For example, if a third party
patent license is required to allow Recipient to distribute the Program, it is Recipient’s
responsibility to acquire that license before distributing the Program.”).

127 See, e.g., id.
128 See, e.g., APSLv2.0, supra note 122, ¶ 6 (“You may choose to offer, and to charge

a fee for, warranty, support, indemnity or liability obligations and/or other rights
consistent with the scope of the license granted herein . . . to one or more recipients of
Covered Code. However, You may do so only on Your own behalf and as Your sole
responsibility, and not on behalf of Apple or any Contributor.”).

2006] Moderating the Rein over Software Users 219

Thus, while FOSS is royalty-free and comes with source code, it
carries a novel set of legal risks compared to traditional proprietary-
licensed software. These risks explain the emergence of distributors,
such as Red Hat, who provide the services discussed above. While
Red Hat prices these services, their offering makes the FOSS exit
alternative appear, from a licensing perspective, more equivalent to
traditional licensing.129 This business model of layering services on
top of the FOSS license retains the benefits of source code
availability and the price advantage of no royalties, while also
normalizing the exit opportunity to make it more palatable to
corporate information technology departments.130

As a result, many corporate users choose to purchase FOSS from
distributors such as Red Hat, or procure systems from companies
such as IBM that bundle FOSS into a set of goods and services.
Some, but probably not all, of these users have the technical
expertise and resources to download and install the freely available
FOSS software. The comparatively greater expertise of the FOSS
distributors to manage the distribution process, in conjunction with
the layered services that they provide, channels users to the
distributors. They optimize the FOSS exit alternative for corporate
information technology departments. In this process, and in their
presence in the marketplace, the FOSS distributors also contribute to
the indirect voice in FOSS licenses and projects.

129 Steve Ballmer, Microsoft CEO, relates: “As you point to the commercialization of
Linux, which is going on, we are not competing typically [versus] ‘free.’ We are
competing much more often with something else that has a positive price. So we are in a
more normal competition.” Carolyn A. April & T. C. Doyle, It’s a Microsoft World . . .
Where Do You Fit In?, VARBUS., June 24, 2005, at 28, available at 2005 WLNR
10608113 (quoting from a VARBusiness interview with Ballmer concerning the
normalization of competition with FOSS).

130 Open Source Risk Management touts itself as the “industry’s only vendor-neutral
provider of risk mitigation consulting and protection of open source users.” See A Legal
Gun in the Open-Source Corral: With Users of This Software Vulnerable to Lawsuits,
Venture Capitalist Daniel Egger Sees a Profit by Offering Protection, BUS. WK. ONLINE,
Nov. 12, 2004, available at 2004 WLNR 14506184 (discussing, in an interview with
Open Source Risk Management (OSRM) founder, Daniel Egger, how OSRM hopes to
help companies that use FOSS to get insurance against patent and copyright suits); Larry
Greenmeier, Service Offers On-Demand Tool for Finding Software-Licensing Violations:
Black Duck Has Been Riding Wave of Concern Sparked by SCO Group’s Lawsuits Tied
to Its Claims on the Linux Code, TECHWEB NEWS, Mar. 28, 2005, available at 2005
WLNR 4865139 (discussing how Black Duck Software, Inc. is offering software
“designed to help companies identify open-source code being used in their IT
environments and ensure that code is being used properly”).

220 OREGON LAW REVIEW [Vol. 85, 183

The corporate-style licenses are business oriented. In contrast to
the GPL, discussed below, they have limited precatory language
extolling the virtues or philosophy of FOSS. Even the few
corporate-style licenses with precatory, voice-oriented language have
only a modicum of such in comparison to the GPL. Traditional
license agreements, like many contracts, sometimes have
preambulary language describing the context of the transaction.
Most corporate-style FOSS licenses omit this, although a few
acknowledge the ideas behind FOSS before moving on to the
substantive terms defining the rights and conditions. For example,
one license by a large software company releasing a product as
FOSS notes that it believes “that the open source development
approach can take appropriate software programs to unprecedented
levels of quality, growth, and innovation.”131 Another license states
that FOSS “results in better quality, greater technical and product
innovation in the market place and a more empowered and
productive developer and end-user community.”132 Thus, a few
licenses contain FOSS-advocating, indirect voice in the license text.
Overall, however, the text serves the primary purpose to define the
unique exit opportunity FOSS provides.

While voice-oriented language in corporate-style FOSS licenses is
minimal, these licenses sometimes have parol materials extolling
FOSS. These take the form of “frequently asked questions” (FAQ),
lists, or similar writings posted on the web sites of organizations
promulgating FOSS licenses. For example, a leading open source
software package, called Eclipse, is licensed under the Eclipse Public
License, which is a corporate-style FOSS license.133 While the
license itself does not recite the benefits of FOSS, the FAQs
associated with the license discuss the business and technical
advantages of the FOSS approach to software.134 Ancillary
materials such as licensing FAQs add to the indirect voice effect of

131 Computer Associates, Computer Associates Trusted Open Source License Version
1.1, License Background, http://www3.ca.com/Files/Licensing/
trusted_open_source_license.pdf (last visited July 17, 2006).

132 Open Source Initiative, The Frameworx Open License Version 1.0,
http://www.opensource.org/licenses/FW1.txt (last visited July 17, 2006).

133 EPLv1.0, supra note 120.
134 Eclipse, supra note 39, nos. 9 & 10. (First, “[a]n Open Source community provides

a way for individuals and companies to collaborate on projects that would be difficult to
achieve on their own.” Furthermore, “[t]he Open Source model has the technical
advantage of turning users into potential co-developers. With source code readily
available, users will help you debug quickly and promote rapid code enhancements.”).

2006] Moderating the Rein over Software Users 221

the otherwise businesslike tenor of the corporate-style FOSS
licenses.

As an institutional mechanism embodying exit and voice, these
licenses favor exit. Indirect voice-content about FOSS philosophy is
minimal. Like in the voice-laden GPL discussed below, direct voice
is present in the threat of exit to a FOSS alternative; rather than
complain, a proprietary software user tells the vendor she will switch
if the vendor does not provide some feature or commercial benefit.
Exit is viable only for those applications where FOSS equivalents
are available. In these application categories, the mere possibility of
exit adds to the voice effect arising from the license and software.

Many of the corporate-style licenses originate from companies
that fit, at least to a degree, in the classification of “open source
advocates.” In several instances, these companies “donated” entire
software products or technologies to the FOSS movement and made
the source codes available under a corporate-style FOSS license.135
These instances endow FOSS users with additional exit alternatives,
enrich the overall FOSS code base, and help increase the greater
FOSS community. Even non-FOSS users are likely intrigued when
suddenly a new FOSS alternative appears. The intrigue may derive
from the possibility of lower cost, some identity with the message of
FOSS, hopes for more influence over a software technology, or a
combination of all of these benefits.

2. The GPL

Compared to the corporate-style FOSS licenses, the tenor of the
GPL and its related licenses is counter-establishment. More than any
other FOSS license, the GPL leads with activism. At the same time,
it originated the unique FOSS exit alternative. It has spawned some
related licenses, but the important points can be made simply by
working with version two of the GPL, although much of this
discussion also applies to the draft of version three posted in January
2006. The GPL’s voice-filled preamble is almost a full page of the
GPL’s seven pages.136

The preamble opens with the proposition that traditional licenses
“are designed to take away your freedom to share and change . . .
software” and then goes on to explain, for several paragraphs, how

135 See Hamerly & Paquin, supra note 15, at 203-06 (describing Netscape’s release of
its code to the public at large).

136 GPL, supra note 7, at Preamble.

222 OREGON LAW REVIEW [Vol. 85, 183

and why its copyright-based licensing system corrects these
traditional inequities.137 Moreover, the preamble also discusses the
threat to FOSS exit it contemplates from software patents.138

The substantive terms of the GPL attempt a “plain-English”
approach to legal drafting. Lawyerly drafting practices such as
defined terms and other mechanisms are minimally used. Most of
the GPL sets out the copyright-based license conditions of source
code availability, no royalties, and reapplication of the same terms
upon distribution of the same or modified versions of the
software.139

Version two’s substantive language for software patents, however,
does not explicitly implement the preamble’s indirect voice content
about patents. In essence, term seven of version two of the GPL
only says that a recipient cannot distribute the software if doing so
would contravene some other legal prohibition, such as in the case of
patent infringement.140 From the software patent perspective, the
corporate-style FOSS licenses provide an exit alternative with
greater minimization of the exit-inhibiting risks that might arise from
third-party software patents. Here, however, it is important to
distinguish version two of the GPL from version three because the
latter version implements explicit patent permissions.141 Thus, the
final draft of GPL version three may provide license equivalence in
this area.142

137 Id. (“To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the software, or if you modify
it.”).

138 Id. (“[A]ny free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary. To prevent this, we have made it
clear that any patent must be licensed for everyone’s free use or not licensed at all.”).

139 See ROSEN, supra note 114, at 105-07, 125-33 (explaining, in detail, the structure
of the GPL).

140 GPL, supra note 7, § 7. License term eight has a similar provision for a special
case when distribution in a particular geography is not available due to blocking patent
rights. Id. § 8.

141 GPLv3, supra note 7, §§ 2, 5, 11.
142 In the case of either the GPL or corporate-style FOSS licenses, proprietary

software vendors represent the most likely group of potential patent infringement
plaintiffs. Additionally, merely obtaining a patent license to use, modify, or distribute a
program would not lead one to characterize the program as “proprietary,” unless perhaps
the license was exclusive.

2006] Moderating the Rein over Software Users 223

Even though unorthodox, the success and popularity of the GPL is
undeniable. It was the first FOSS license,143 and it has a strong
message of indirect voice. The FSF refers to the GPL’s indirect
voice content as the “constitution” for the free software
movement.144 It is probably the most widely used FOSS license at
the time of this writing.

From the perspective of Hirschman’s Exit, Voice, and Loyalty, the
GPL’s success derives from a synergistic concentration of exit and
voice. The Hirschman framework suggests that sometimes society-
wide benefits result when institutional mechanisms facilitate greater
voice or allow exit under protest.145 The GPL seems to be a unique
example of an institutional device using both exit and voice to
discipline an entire industry. Hirschman’s framework is about both
economics and politics because he is interested in the disciplining
effect of exit and voice, independently or in conjunction when both
are present, on both firms and non-firm organizations, including
governments.

The FOSS movement is both political and economic, especially
considering the emphasis of the two “camps.” While free software
advocates are most interested in the social and political advantages
wrought by FOSS licensing, the open source software advocates
emphasize economic integration of FOSS into the greater
information technology infrastructure. The synergistic dualism that
starts with the GPL, and maps nicely to Hirschman’s framework, is
reflected in the FOSS community. The political message of the GPL
goes beyond competitive factors of software functionality, even as
its licensing terms define an exit alternative that may reorder large
swaths of a critical industry. The GPL’s creed of functional
freedom, through software sharing, invites an evaluation of its social
value for software technology.146

143 See MOODY, supra note 60, at 26-28 (describing Stallman’s creations as the “main
engines in driving the free software projects on to their extraordinary success”); ROSEN,
supra note 114, at 103 (describing how the GPL transformed the world of software).

144 MOODY, supra note 60, at 27; Dixon, supra note 76, at 106 n.257; Tai, supra note
76.

145 See HIRSCHMAN, supra note 1, at 119.
146 See Jonathan Zittrain, Normative Principles for Evaluating Free and Proprietary

Software, 71 U. CHI. L. REV. 265, 268, 274-75 (2004) (discussing FOSS as a social
movement: “the legal system must have a framework with which to judge the social
value of free software’s open development model”).

224 OREGON LAW REVIEW [Vol. 85, 183

The GPL’s indirect voice content is much greater than that of the
corporate-style FOSS licenses. Both license types provide exit for
users who need software for their operations. The traditional FOSS
bargain, however, does not allow those users to privatize the
software through traditional royalty-based licensing. Only in the
rare case of permission from all contributors could one privatize the
code. In such a scenario, any current user still would probably be
able to take the code down an open source path. Given this situation,
some companies created a new type of licensing system, called dual
licensing, that builds on the ideas of FOSS licensing and allows
distributors a choice as to whether or not the code they distribute is
open source.

3. Dual Licensing

Dual licensing works as follows: if a distributor uses a FOSS
license with her users, then the originating dual licensor provides the
software under a FOSS license. On the other hand, if the distributor
takes a non-FOSS approach, licensing only object code and charging
royalties, the dual licensor applies traditional, royalty-bearing,
proprietary software licensing terms.147 In essence, the dual licensor
offers bifurcated terms, and the distributor-licensee chooses to
operate on one side of the bifurcation or the other. The originating
dual licensor, however, can incorporate software revisions it finds on
the open source side into the proprietary side.

As a hybrid license that charts a path between a FOSS license and
a traditional software license, dual licenses retain some of the
attributes of the traditional proprietary licensing scheme. This
arguably enables companies whose business models are not based on
FOSS complements, such as Red Hat and IBM, to prosper with a
licensing revenue stream.148

From the perspective of the dual licensor, the other benefit is that
it can in effect “harvest” code from the open source community and
include the harvested code in the original software project for future
licensing under either a FOSS model or propriety terms. The
originator’s permission to do this is in the original dual license.
Under this structure, as soon as a FOSS licensee of the dual-licensed

147 See, e.g., MySQL, MySQL Licensing Policy Version 5.1 http://www.mysql
.com/company/legal/licensing/index.html (last visited July 17, 2006).

148 See, e.g., Mike Olson, Show Me the License, LINUX WORLD MAG., Aug. 11, 2003,
http://linux.sys-con.com/read/33893.htm.

2006] Moderating the Rein over Software Users 225

software distributes the code, the FOSS side of the dual license
requires source code availability, and the dual license also allows the
originator to incorporate the code into the master software project.
While not every modification to the original code will be distributed,
thus triggering source code availability, the structural benefit of the
dual license is that the partial commons created by a FOSS license is
available to the originator for relicensing under commercial terms on
the other side of the dual license, so long as the originator also
makes the code available under the FOSS license.149

The dual license provides an exit opportunity that might be FOSS,
or might not. It is significant for the exit choice it presents software
integrators, distributors, and value-added resellers (VARs), but dual
licenses are less well-suited for end users. The details of dual
licensing are complicated and they have greater applicability for
certain types of software, such as code designed as a component for
other software.

As a unique innovation of the FOSS license, the dual license
expands the FOSS-like exit opportunities originating from the
movement. To the extent the dual licensor promotes and supports a
FOSS development community around the software technology, end
users have greater possibilities for viable FOSS equivalents for exit.
The dual license acts as a cross-subsidization mechanism whereby
license-paying distributors support the dual licensor’s business,
allowing the company to promote the FOSS community as well as
develop the product itself. These distributors may have customers to
whom they can apply the traditional royalty-bearing licensing model
because the customers lack the greater technical expertise sometimes
necessary for FOSS, or because the distributors have value-added
technology that they bundle with the dual-licensed software.

Besides expanding FOSS exit opportunities, dual licensing carries
indirect voice about the merits of FOSS. For example, one well-
known dual licensor declares, in its FOSS license, that the “intent of
this license is to establish freedom to share and change the software

149 To complete the “quid pro quo” sometimes used to justify dual licensing, and
perhaps mollify FOSS purists who dislike dual licensing, the originating dual licensor
who incorporates distributed FOSS modifications into the master code base must
continue to make the third-party revisions available under both sides of the dual license.
See Robert W. Gomulkiewicz, Entrepreneurial Open Source Hackers: MySQL and Its
Dual Licensing, 9 COMP. L. REV. & TECH J. 203, 209-11 (2004) (describing dual
licensing generally, and describing specifically MySQL’s dual licensing implementation,
which included a need to handle license compatibility issues arising from the GPL).

226 OREGON LAW REVIEW [Vol. 85, 183

regulated by this license under the open source model.”150 This dual
licensor notes the following in its licensing overview materials:

Trolltech aims to make the best cross-platform development tools
in the world. By selling commercial licenses, we are able to staff a
full-time dedicated development team and are able to provide first
class support.
 By providing our products under open source licenses, we are
also an active member of the open source community. This
community has played an important role in ensuring the stability
and quality of our products. Trolltech’s products are thoroughly
tested by thousands of open source developers around the world.
Through active community participation in our development
process, Trolltech products reach commercial stability far more
quickly. We call this our Virtuous Cycle.151

The indirect-voice content in dual licenses and their supporting
materials tends to match the volume and tone of the corporate-style
FOSS licenses, and thus pales in comparison to the indirect-voice
content of the GPL. The dual license joins the other two categories,
however, in offering an exit alternative with software development
transparency and a perception that users will have greater voice in
the progression of the software.

B. FOSS Development Transparency

FOSS software development depends on a variety of group
organizational practices that are not necessarily encoded in the FOSS
license.152 These practices differ from traditional proprietary
software development but must accomplish the same objective:
allowing groups of programmers to work together to generate
interoperable software that comprises a software product or
technology.

1. FOSS Project Governance and User Participation

It is becoming increasingly difficult to stereotype FOSS
development, but for the most prominent projects there are some

150 Trolltech, Q Public License Version 1.0, http://www.trolltech.com/products/qt/
licenses/licensing/qpl (last visited Sept. 17, 2006).

151 Trolltech, Business Model, http://www.trolltech.com/company/about/
businessmodel (last visited July 17, 2006).

152 See WEBER, supra note 37, at 72-82, for a good discussion of the eight “general
principles that capture the essence of what people do in the open source process.”

2006] Moderating the Rein over Software Users 227

common elements.153 One oft-celebrated feature is its distributed
nature. The programmers are scattered, possibly across the globe,
and use the Internet to coordinate activities. Volunteerism, or at
least subsidization, fuels the projects. Either or both could come
from an individual or company. FOSS’s volunteer-based,
distributed-development model is also unique in its opportunity for
programmers to self-select for work within the project.154 While
programming is as much art as science, good solutions are
recognizable. One can earn one’s way onto a desired part of the
project by contributing superior code for that part.

Each project has some measure of leadership, comprised of one or
more individuals, but typically not a large group. The leadership
group comes together in a variety of ways.155 Among these leaders,
various forms of group decision making might apply, such as the
formal backdrop of corporate governance if the project is housed
within a nonprofit, codified bylaws or other governance procedures,
or informal persuasion and deference among the group leaders.

Deliberations, along with just about everything else relating to the
project, tend to be publicly available via web site(s) devoted to the
project.156 With sufficient technical acumen, users, programmers,
and the general public can examine bug fix submittals from users
and developers, discussions about new functionality and the timing
of the release of new versions, and other internal matters. This
transparency into the inner workings of the development process is a
key distinguishing factor compared to traditional software
development. It is an important factor in the exit and voice a FOSS-
equivalent technology provides.

The incentive structure of the development team, and its host
organization, impacts software users. Proprietary software users
may see advantages in FOSS development teams. Not only can the
FOSS user see the code as it develops, often she can review the

153 Many, but perhaps not all, of these common elements of FOSS development will
apply even when the project springs from a dual licensor or FOSS distributor.

154 See Yochai Benkler, Coase’s Penguin, or, Linux and the Nature of the Firm, 112
YALE L.J. 369, 414-15 (2002) (noting that an advantage of open source software and peer
production is that, compared to management hierarchies, contributors are better able to
judge where best to apply their talents within various projects).

155 See WEBER, supra note 37, at 88-93, 166-71, for an overview of the various
leaders and styles of leadership within the FOSS community.

156 See, e.g., The Linux Kernel Archives, http://www.kernel.org (last visited July 17,
2006).

228 OREGON LAW REVIEW [Vol. 85, 183

deliberations of the development team, communicate with the
developers directly, and make suggestions for bug fixes, features,
and functionality at a much greater level of detail and technical
sophistication due to the source code availability. The user’s direct
voice, after switching to FOSS, may be more potent because the
traditional corporate intermediary no longer separates the user from
the development team.

Moreover, the FOSS-switching user knows that if necessary, she
can take the development in-house if the developer community
disbands or loses interest. This is not necessarily a panacea: most
users want their software product providers to remain viable to
provide, at the least, upgraded software versions. On the other hand,
taking over a FOSS-community supported project is likely a less
difficult exercise than the equivalent doomsday scenario when a
proprietary software company or product dies, triggering a release of
source code under the escrow agreement.

2. Project Abandonment and the Insufficiency of Source Code
Escrow

Built into FOSS licensing is a better remedy for the doomsday
scenario of development team abandonment than the traditional
source code escrow approach. Even though its benefits are hard to
realize, a market exists to place software source code in escrow.
This happens mostly among corporate entities for high-value or
negotiated software licenses. In order to make the sale, many
proprietary software providers must represent to corporate users that
the source code is available from escrow. The provider enters into
an escrow agreement with a third party. If the provider abandons the
product, as defined in the escrow agreement and typically meaning
that the provider no longer exists as a going concern, the corporate
user has the right to obtain the source code for purposes of internal
maintenance and support. Traditionally, the corporate user did not
have broad latitude with the source code once released from escrow.

The other problem with source code escrow was that it relied on
the continued diligence of the software product provider. As the
object code of new releases goes to users, the source code for the
release should go to the escrow company. But it might not,

2006] Moderating the Rein over Software Users 229

especially if the software company is under financial pressure.157
Even if delivered, the quality of code commenting (sometimes
essential for a third party to deal with the code) may drop during
times of financial decline. In sum, there are a number of reasons
why an abandoned user might be disappointed and without an
effective remedy when she turns to the escrowed copy of the source
code.

Contrast source code escrow with FOSS, where a current copy of
the source code is always available and can easily be obtained by the
user. If a corporate user will not need to resell the software because
it is merely an operational resource and not a profit opportunity,
FOSS is superior to combat the doomsday scenario against which
source code escrow agreements are meant to protect. The user can
monitor code quality in an ongoing manner. It does not have to wait
until it is too late to discover that the code is so poorly commented,
written, or designed that maintenance costs will be outrageous, if the
software can be maintained at all. Moreover, the user is more likely
to be able to discover the identity of programmers the user may want
to hire to continue development and maintenance. In hiring the
programmers, the users have the option to simply maintain its own
internal version, attempt to revive the FOSS community around the
software, or create a new community. The dissatisfying nature of
source code escrow enlightens the advantages FOSS provides to
solve the abandonment problem in a way that maximizes the user’s
chances to retain a vibrant and viable code base.

Abandonment is a possibility in both proprietary software and in
FOSS. The user’s incentives arising from possible abandonment of
FOSS, however, help counter the non-contributing-user problem
inherent in FOSS and thus coloring its exit opportunity. A user can
download FOSS and use it internally without any obligations to pay
anyone or contribute anything to the project. A high percentage of

157 See Jon C. Christiansen, Doing Software Escrows Right, 21 COMPUTER &
INTERNET LAW. 17, 17-18 (2004), available at http://www.escrotech.com/Doing
Software Escrows Right - 2.pdf (discussing licensees’ lack of knowledge on how to use
the source code, third-party ownership of the software, and improperly maintained or
updated escrows as some of the common problems of source code escrow); Dean
Gloster, Typical Source Code Escrow Agreements: What’s Broken and What Works
Instead, FARELLA BRAUN & MARTEL L.L.P., May 25, 2005,
http://www.fbm.com/index.cfm/fuseaction/publications.archive/publications
_archive.cfm (filter publications by “Bankruptcy and Creditors’ Rights”; then follow
“Typical Source Code Escrow Agreements” hyperlink) (discussing the practical reasons
why source code escrows do not work).

230 OREGON LAW REVIEW [Vol. 85, 183

such users in the population for an application can diminish the
import of some of the most important benefits of FOSS development
practices, which inherently work better with a more active user base.
For example, one explanation to support the claim of FOSS’s higher
quality is that a “massive” peer review process helps vet the code in
a way not available in traditional development.158 This process is
less effective as noncontributing users increase in the user base.

A FOSS user, however, knows that in many cases the
development team has a more fragile persistency compared to
traditional software development groups. This is especially true for
FOSS projects without an organizational anchor, such as a nonprofit,
dual licensor, or corporation with complementary services. This
knowledge drives an incentive to participate in the community by
providing input to the development team, helping write software
manuals, submitting bugs or even suggesting code revisions to fix
problems if the user has the technical acumen, and generally
remaining in touch with the development community.

There is a similar incentive to preventively participate in such
activities with proprietary software as well, but the opportunity for
participatory scope is reduced, and the perceived need is likely
different. Many corporate users pay regular maintenance fees to
their software providers. With these payments, it is easy for a user to
take the attitude that all she needs to do is pay the fees and report
problems when she perceives them. This arrangement deemphasizes
the opportunity for the corporate user’s personnel to contribute as
frequently in a deep and meaningful way. While these personnel are
sometimes able to help advance the software if they had access to
internal information, such access is often limited with proprietary
software. FOSS licensing, on the other hand, makes all internal
software information available. The curiosity of a user’s personnel,
combined with the knowledge that involvement helps sustain the
community that brought forth the code in the first place, invite
involvement. This involvement helps prevent the demise of the
FOSS development community.

3. Responses to Disbanding Development Teams

One path to demise for a FOSS community is that it loses energy
and disbands, either because the software attracts insufficient

158 See Raymond, supra note 63, § 7.1 (discussing the positive effects of “massively
parallel peer review” for software development).

2006] Moderating the Rein over Software Users 231

numbers of participatory users, or because the leaders lose interest
and no new leaders emerge. Another path to a FOSS community’s
demise is the often discussed but rarely occurring “fork” where some
members of a development team exercise their rights under FOSS
licensing to exit the original team and chart a new path with the
software.159

The fork possibility illustrates that Hirschman’s exit and voice
mechanisms influence dynamics within a FOSS development
group160 as well as between the proprietary software user and her
vendor. While the processes of exit and voice within a FOSS
community are not this Article’s focus, I touch upon them briefly
because they color the exit opportunity for the user switching to a
FOSS equivalent. Just as the FOSS license enables both exit and
voice for the user against proprietary software vendors, it enables
exit for any developer or group of developers within a FOSS
development community. There are factors that limit the occurrence
of a forking exit, but in theory, it is possible.

FOSS licenses inherently allow a project to fork; that is, one
group of developers can take the code base and start down a different
path. This group would exit the development collective of the
original in order to strike this new path. The common wisdom is that
forking is rare, but the structural point, in light of the Hirschman
framework, is that forking is a possibility of exit with a disciplining
effect on the development project leaders.161 There is no equivalent
disciplining effect on the development teams for proprietary
software; disgruntled programmers can change employers or try to
change assignments, but the developers are without the ready legal
rights to “fork” the project as compared to the FOSS developer.

A number of factors produce an incentive structure that helps limit
forking. First, the governance of most FOSS projects establishes a
norm of transparently debating and working out problems.162 Even
if programmers are not directly involved in an issue, they can always
review how it was “adjudicated” in the communications typically
logged on the Internet in relation to the project. In that sense, the
character of the leaders is always open to public inspection, which

159 See ROSEN, supra note 114, at 301-03 (describing “forking” generally, and
suggesting, as an example, Sun’s SISSL as a model to prevent it from occurring).

160 See WEBER, supra note 37, at 158-60.
161 See id.
162 See Coleman, supra note 49, at 6-8, 24-28 for an example of how debate

functioned within the Debian project.

232 OREGON LAW REVIEW [Vol. 85, 183

can give group members confidence that some direct voice is worth
the effort.163 Second, project leaders often need to recruit
developers and users. Their recruiting investment in the group
makes them more likely to compromise before losing a part of the
development team to a fork. Third, momentum is an obvious force
that might limit forking, and Hirschman notes that it is a general
inhibitor of exit.164 Fourth, developers understand that the sum is
greater than the parts. A forking group who only takes part of the
team may not achieve its objectives. It may have insufficient
resources to chart the new path it desires.

As predicted in the Hirschman framework, when exit is limited,
voice often plays a greater role in disciplining an organization. It is
likely that both mechanisms influence FOSS development teams.
Exit is not optimal, and direct voice is easy to implement. The
community’s institutional structure is uniquely built to easily take
inbound communications. Developers use this structure to create the
code, and can use it to express dissatisfaction with the organization.
An active FOSS development team is thus accustomed to processing
and responding to direct voice. This capability is an attractive
feature for proprietary users considering a switch to a FOSS
alternative.

Switching to FOSS is attractive due to perceived advantages of
transparency for the development process, even if the persistency of
the programming team is potentially fragile in comparison to
proprietary software vendors. As the FOSS ideology gains greater
overall acceptance, the fragility of any particular FOSS project may
lessen. Beyond the chance to participate to a greater degree in
development, FOSS exit offers the proprietary software user the
other mainline advantages of the FOSS license: royalty-free use,
source code availability, and conditions that try to ensure the
continued survival of the first two terms. Led by the GPL and its
related licenses, a variety of FOSS license types implement this basic
FOSS promise. The license categories differ in their approach to
technical issues, such as whether they forestall assertion of patent
rights by recipients of a FOSS technology. All FOSS licenses claim
copyright in the code for the contributing developers or their

163 See id. at 58, 62-69 (chronicling the monumental response to one seemingly benign
e-mail and how it nearly tore the Debian project apart).

164 See HIRSCHMAN, supra note 1, at 78 (discussing how loyalty to an entity dissuades
exit).

2006] Moderating the Rein over Software Users 233

assignees,165 and the categories discussed in this Part provide a
FOSS exit for users of proprietary software. Each does so with
varying degrees of indirect voice springing from either the license
text or from materials associated with the license. The voice-
carrying capacity of the FOSS license, and in particular the path-
breaking GPL, highlights its unique character as an institutional
mechanism that symbiotically combines exit and voice, offering a
new response to perceptions of decline in traditional proprietary
software.

Parts I and II of this Article focus on the proprietary software user
considering the switch to a FOSS alternative. The dynamics of this
exit opportunity have: (1) elements of direct voice in the actions or
communications by the user directed to her proprietary vendor, and
(2) elements of indirect voice, such as advocacy to wider audiences
that a change is needed.

The next two Parts expand on the indirect-voice theme within the
Hirschman model, although some related examples of direct voice
are also briefly discussed. Each of the next two Parts intrinsically
depends on the existence of the exit mechanism as well. The
presence of viable FOSS alternatives makes threat of exit a potent
message that FOSS advocates can deploy as direct or indirect voice.

III
EXIT, VOICE, LOYALTY, AND NEGLECT—THE EXTRACURRICULAR

FOSS CONTRIBUTOR

Among the areas where Hirschman’s framework has influenced
legal scholarship is labor and employment. In that context, the
employee has the options of exit or voice, and, if conditions allow
for it, loyalty may forestall exit to allow voice to operate.166
Scholars have extended the Hirschman framework to add neglect,
where, in the employment context, the employee does not exit, but
declines to voice dissatisfaction.167 The first section of this Part
briefly reviews this extension and its applicability to programmers
and information technology personnel. The second section applies
the extended framework to the moonlighting FOSS contributor.

165 ROSEN, supra note 114, at 28-30.
166 See HIRSCHMAN, supra note 1, at 77-81 (discussing the role of loyalty in his

framework generally).
167 See, e.g., Rusbult, supra note 52, at 601-02.

234 OREGON LAW REVIEW [Vol. 85, 183

A. Neglect as an Extension to the Hirschman Framework

The employment context illustrates subtleties in the original Exit,
Voice, and Loyalty framework. Exit and voice each have an
opposite. Employees can stay rather than exit, and remain silent
rather than give voice.168 Hirschman posited loyalty as a mechanism
that forestalled exit, allowing voice to operate in some situations.169
Specifying the loyalty mechanism can be difficult because the
circumstances compelling an employee to stay and give voice might
not fit into general conceptions of loyalty, perhaps reducing that
word to a label for anyone who stays and voices for any reason.170
Hirschman’s exposition did not emphasize the combination of no-
exit (stay) and no-voice (silence). This is neglect, where the
dissatisfied customer, member, or employee stays and suffers her
dissatisfaction in silence.

A technical employee might be dissatisfied with her job for any of
the usual reasons unrelated to her areas of expertise, but I want to
focus on dissatisfactions programmers and other IT professionals
may feel that relate to their technical opportunities and sense of
professional identity and community. These may be attractions for
FOSS contributors, and to the extent they are lacking in their job,
there is the possibility of finding them in extracurricular FOSS work.
On the other hand, FOSS may not provide such hypothetical salve.
This Part presents these possibilities as a framework to conceptualize
exit and voice for the extracurricular FOSS contributor, recognizing
that empirical work is necessary to verify the framework or its
intuitions.

Within computing, there is a tremendous amount of legacy code.
This is old software written in outdated programming languages.
Programmers maintaining these applications may have little chance
to learn new languages and software technologies on the job. The
company’s need to retain a productive specialist in her current role
may diminish the company’s incentive to move technologists to
career-enhancing positions. These spots may be filled by employees
with more recent training and familiarity with newer technologies.
The resulting technological entrapment the programmer feels may be
bearable given the other benefits of employment, yet nonetheless the

168 See Laver, supra note 31, at 471, 477-81.
169 HIRSCHMAN, supra note 1, at 77-78.
170 See Laver, supra note 31, at 480-81 (questioning the extent of the relationship

between voice and loyalty).

2006] Moderating the Rein over Software Users 235

situation remains dissatisfying. The offsetting benefits might include
a community of peers, or it might not. This could depend on
whether the company generally employs other programmers, or on
whether its software applications require team-intensive
development.

The job satisfaction of every programmer will not necessarily rise
and fall on career enhancing and peer community opportunities, but
the unique nature of programming helps explain why these are often
important and desired satisfactions. The work is a unique
deployment of human capital. It is complex, creative, and often
team-implemented. Given the nature of software development, a
programmer’s mindset, enthusiasm, commitment, and energy for the
project is critical for her employer and serves as a barometer of her
satisfaction. The extracurricular FOSS work may signal that the
technologist has withdrawn to a diminished state of commitment for
her employer’s project. This posited lost energy is indirect exit. A
potential cause is that the FOSS work can sometimes ameliorate
these dissatisfactions.

FOSS development often uses current technology. One can work
with, or even help create, some of the newest software technologies,
breaking a cycle of technological entrapment. Also, FOSS offers a
strong tradition of community and peer involvement. Even though
many FOSS communities are virtual, they provide the FOSS
contributor with an affiliation that often presents philosophical
attractions. While there are a variety of other motivations for FOSS
developers, these two are possible salve for the dissatisfied
technologist who cannot exit her full-time job. This balm does not
reverse the employee’s state of neglect, but it provides an
extracurricular outlet with countervailing benefits.

B. Voice from Extracurricular FOSS Contributions

Conceptually, the moonlighting FOSS contributor might fit within
the neglect category of the extended Hirschman framework. From
the perspective of the relationship between employer and employee,
by definition, a programmer in the state of neglect is not exercising
direct voice. Even if this is true, however, the FOSS contributor’s
moonlighting has indirect voice value in the dispositions generally
occurring between software users and proprietary software vendors,
and possibly within the contributor’s employer. Conceptualized in
the extended framework, the dysfunctional state of the employer-
employee relationship is a dynamic factor in the general ethos of

236 OREGON LAW REVIEW [Vol. 85, 183

opinion about closed versus open software. In other words, the
neglect may spill over as indirect voice with a general, and perhaps
specific, effect on the contributor’s employer.

The proposition that moonlighting on FOSS generates indirect
voice within the software ecosystem relies on three points. First,
there are a nontrivial number of gainfully employed technologists
who voluntarily contribute to FOSS apart from their primary job.171
Second, some of these technologists work for traditional proprietary
software providers, although the technologists who work for end
users also fit into the equation. Third, there is some degree of
implicit or explicit disclosure about the moonlighting to others,
including perhaps to the technologist’s employer. The mere fact of
the moonlighting, and others knowing about it, is the primary fount
of the indirect voice.

The argument for this proposition does not assume an
extraordinary programmer doing spectacular things in the code or
within the FOSS community. Instead, an ordinary FOSS volunteer
is the focus, someone who puts in a few hours a day, week, or
month.172 Nor does the contribution need to be code. I include in
the definition of the FOSS contributor nonprogrammer information
technologists such as system administrators, quality control and
testing personnel, and related roles. The key distinction in this
framework is that their extracurricular activity contributes to the
FOSS project and rises above the activity of a passive user. For
example, a nonprogrammer who applies the Linux kernel to novel
hardware, regularly discovers problems, and submits bug reports to
the relevant hierarchy contributes without programming.

Under the first point, common lore for FOSS states that a
nontrivial, and perhaps substantial, amount of the programming
labor on many FOSS projects is a volunteer effort.173 At this level
of generality, the assertion is hard to dispute, although it is difficult
to quantify empirically. The analysis should exclude technologists
who are paid to work on FOSS by complementary providers such as
Red Hat or IBM. More generally, the analysis should probably
exclude technologists whose primary means of financial support is

171 See MOODY, supra note 60, at 154-55; WEBER, supra note 37, at 130-33.
172 It is not the purpose of this Article to set a time commitment threshold that would

define an “ordinary extracurricular FOSS contributor.” Rather, this Article assumes that
such a commitment would be secondary to the technologist’s employment.

173 See MOODY, supra note 60, at 154-55 (suggesting that the motivation of hackers is
similar to that of famous artists).

2006] Moderating the Rein over Software Users 237

highly complementary to FOSS. Many other viable motivations
serve to explain why there would be a population of FOSS
moonlighting contributors, including the motivation to develop one’s
skills with new or different technologies, and the motivation to
scratch an itch—that is, create some feature or function for one’s
own use.

The second point is that FOSS moonlighting contributors are
employed both by end users, and paradoxically, proprietary software
vendors. There is a degree of indirect voice in each case, although
the second case has greater shock effect.

Consider the case where the moonlighting technologist is
employed by an end user. This situation does not pose the direct
conflict of philosophies inherent where a proprietary software
vendor employs the technologist. On the other hand, moonlighting
by any employee often creates risks for the employer. As a result,
some end user employers seek to prohibit or discourage
moonlighting. One legal risk for end-user technology companies
arises from the potential disclosure of proprietary technology by the
moonlighting activity. Another disadvantage from a human resource
perspective is that, at some level, moonlighting diverts energy from
the technologist’s primary employer. Some employers flatly prohibit
moonlighting, but of course, not all employees comply.174 Other
employers allow it under various conditions, which range from
requiring authorization, to quantifying the maximum number of
moonlighting hours or specifying the technologies within which the
employee can moonlight.

Under the third point establishing how FOSS moonlighting might
generate FOSS voice, disclosure of the employee’s moonlighting
may occur formally if her employment agreement or policies require
employer authorization or notice to the employer. Informal
disclosure both to management and to coworkers is also possible
within the social circles inherent in most workplaces. If the
technologist discloses her FOSS moonlighting, this can function as
indirect voice due to FOSS’s aura. The indirect voice effect would
be stronger if the employee is vocal about her reasons for

174 An employer’s moonlighting prohibition may be explicit, or implicit due to the
employment contract typically vesting intellectual property ownership with the company.
Thus, all ideas in a field of technology, or ideas related to the company’s operations, will
belong to the company. This can preclude the legal right to contribute to FOSS without a
release from the company if the contributed code embodies intellectual property
belonging to the company.

238 OREGON LAW REVIEW [Vol. 85, 183

contributing or perceptions of FOSS’s benefits or values. Many
professional workplaces have vibrant social interactions well beyond
business concerns. This workplace social structure is a plausible
place to learn about and debate the pros and cons of FOSS.

The analysis thus far assumes that the moonlighting FOSS
technologist is in the state of neglect, where she does not voice her
job dissatisfaction. Removing this assumption, the technologist
might apply direct voice when employed by corporate end users,
meaning that she may advocate to her employer to begin or increase
the use of FOSS.175 If moonlighting contributions to FOSS help
sooth her dissatisfaction, it is a logical path for her to internally
advocate greater use of FOSS. This direct voice, if heeded, would
help her recuperate greater satisfaction from her job, assuming she is
involved with the FOSS implementation at work. The end-user gets
the benefit of a fully energized employee, along with the various
other benefits of the FOSS value equation that apply to its situation.

This same analysis may not be possible if the employee works for
a proprietary software vendor, especially one with viable FOSS
competition. The natural inclination of the management of such an
employer would be to frown on extracurricular FOSS contributors.
Management unhappiness with FOSS moonlighting might be less
severe if the company’s products have no FOSS competitors and the
FOSS contributor works on complementary technology. For
example, suppose the moonlighting contributor works on the Linux
kernel, while the company’s software product is for engineering
design for aerodynamic air flow systems. The company might very
well sell more copies of its software, assuming it is available on the
GNU/Linux operating system, due to the existence of that operating
system if the combination provides a lower-cost platform.

It also might be the case that the dissatisfied and moonlighting
FOSS technologist would exercise some direct voice to management
to adopt FOSS for internal operations. If the company’s proprietary
software product is the aerodynamic design software, what is the
harm, the employee might ask, to using GNU/Linux to run the
company network, e-mail server, web server, and firewall, and
reduce operational costs by doing so? It seems unlikely, however,

175 See, e.g., C.J. Kelly, Eyeing an Opening for Open-Source: Our Security Manager
Is Surprised When Her Boss Takes an Interest in Exploring Some Open-Source Security
Options, COMPUTERWORLD, July 4, 2005, at 25, available at 2005 WLNR 11479060
(describing how a computer security technologist influenced supervisors at the company
to deploy FOSS for various internal network infrastructure projects).

2006] Moderating the Rein over Software Users 239

that the employee would expend direct voice to convince the
company to convert its revenue-source software product to FOSS.
That does not mean, however, that the social knowledge of the
employee’s FOSS moonlighting does not have indirect voice
effects.176

Within the Hirschman framework, several structural points arise
from these scenarios. First, by taking a path of indirect exit, i.e.,
operating in a state of neglect, a dissatisfied moonlighting FOSS
contributor generates indirect voice about FOSS. This indirect voice
may carry forth as positive advocacy and radiate within the
professional and social circles that the contributor inhabits. Anyone
who knows the technologist and her activities, including her
coworkers, will learn about FOSS.

Second, for corporate users and proprietary software employers,
the dissatisfied employee may try direct voice and attempt to
convince her employer to adopt FOSS to some degree. Unlike most
hobbies, FOSS has features that could be attractive to proprietary
software employers. It does not necessarily matter that the
moonlighting FOSS contributor works on a project that most
companies would not use in their operations, such as gaming
software. The principles of FOSS licensing apply across differing
applications. It is the understanding of those licensing principles that
the moonlighting employee could convey.177

The moonlighting FOSS contributor illustrates the Hirschman
framework in the employment setting. Employment relations and
employment law are areas where the Hirschman framework has
appeared in the literature.178 FOSS applies to the employment
context by offering the employee in a state of neglect a two-prong
outlet. First, she feeds her creative needs by moonlighting on FOSS

176 See Community Debates Microsoft’s Open-Source Agenda, EWEEK, June 3, 2005,
available at 2005 WLNR 9961029 (reporting a software industry analyst as stating that
“there are substantial bodies of people within Microsoft that either already have or are
ready to make good faith contributions to the open-source world”).

177 In a recent work, Thomas Cotter relates meme theory to copyright, and his
approach suggests another theoretical lens for indirect voice in my analysis—the message
of FOSS licensing as a group of memes, or a memeplex. Thomas F. Cotter, Memes and
Copyright, 80 TUL. L. REV. 331, 334 (2005) (arguing that the copyright system “impacts
not only the quantity of new and distinct memes that are created and published, but also
the diffusion, diversity, and quality of the resulting meme pool”). If copyright has this
effect, the unique FOSS inversion of copyright can similarly impact meme ecology, and
this process would include spreading the FOSS meme—a process I call indirect voice.

178 See supra note 5 and accompanying text.

240 OREGON LAW REVIEW [Vol. 85, 183

projects. Second, FOSS may enable her transition from neglect to
direct voice in some situations. Rather than exit the relationship,
FOSS provides an institutional mechanism whereby the employer
can offer the employee a higher level of satisfaction. These
employment interactions in the Hirschman’s framework are related
to and embedded in the larger exit and voice interactions between
end users and proprietary software providers. The linkage between
them further illustrates the importance of this framework in
understanding what sustains FOSS and the importance of the FOSS
license as an institutional mechanism embodying exit and voice.

IV
VOICE FROM THE FOSS COMMUNITY

The preceding three Parts of this Article move progressively from
exit to voice. After exploring the nature of FOSS exit for various
types of users, and what might chill such exit, the preceding Parts
discuss the licensing details governing the character of that exit, and
describe the various ways direct and indirect voice attach. The
immediately preceding section then examines an embedded subtext,
reviewing the influences of exit, voice, and loyalty analyzed in the
Hirschman framework as it applied to a moonlighting FOSS
contributor.

While indirect voice has already been discussed for the FOSS
license, most notably the GPL, and analyzed for the moonlighting
FOSS contributor, this Part focuses on other, broader examples of
indirect voice from the FOSS community. This indirect voice seeds
the greater software ecosystem with the information necessary for a
variety of actors to exercise direct voice. This Part examines indirect
voice in FOSS activism, license enforcement, and lobbying. These
efforts are aimed at exit; they seek to promote a novel way to
license, and thus develop and distribute, software. Although
designed to promote FOSS exit, these efforts in turn are amplified by
such exit when it occurs. There is a synergistic cycle, with each
mechanism seeding and promoting the other. As FOSS exit
increases, so does the background chorus echoing the indirect voice
in the activities below.

A. Norm Entrepreneurship and Public Advocacy

In the age of digital media, FOSS advocacy employs an effective
blend of the old and the new. A variety of public figures, many

2006] Moderating the Rein over Software Users 241

aligned with one of the two “camps” discussed above, promote
various subtexts of the FOSS message. These public figures have a
digital presence, typically through writings published on their web
sites. However, many of them also travel and speak to promote
FOSS.

One of the two most well-known FOSS public figures is Richard
Stallman, author of the GPL, founder of the Free Software
Foundation (FSF), and a free software developer of considerable
repute.179 The other is Linus Torvalds, the original developer and
ongoing leader of the Linux kernel.180

Stallman is affiliated with the free software camp. His advocacy,
and the work of the FSF and its affiliates, is perceived as less
tolerant of proprietary software compared to the open source camp.
The FSF houses important FOSS projects and contains extensive
web materials discussing FOSS licensing and philosophy.181
Stallman travels to a great variety of locations to speak about free
software. He delivers his message cleverly, with great conviction
and compelling logic. He has been controversial in the sense that he
seems always willing to assertively voice his disagreement with
perceived mischaracterizations of the free software movement.182 It
has been said of Stallman that “[i]f Richard did not exist, it would
have been necessary to invent him.”183 Understood in the
Hirschman framework, the inescapable need for a norm entrepreneur
of Stallman’s skill, stature, and persistence is due to the need for
indirect voice to buoy the FOSS movement, especially in its early
phases.184

179 See MOODY, supra note 60, at 29-30 (describing Stallman as a “geek Moses
bearing the GNU GPL commandments and trying to drag his hacker tribe to the promised
land of freedom whether they want to go or not”).

180 See TORVALDS & DIAMOND, supra note 12, at 235-38 (discussing the fame that
accompanied developing the Linux kernel).

181 See Free Software Foundation Home Page, http://www.fsf.org (last visited July 19,
2006).

182 See MOODY, supra note 60, at 29-30; TORVALDS & DIAMOND, supra note 12, at
194-197.

183 Contributors, in OPEN SOURCES, supra note 15, at 269.
184 See David McGowan, SCO What? Rhetoric, Law and the Future of F/OSS

Production 3 (Univ. of Minn. Law Sch. Legal Studies Research Paper Series, Research
Paper No. 04-9, 2004), available at http://ssrn.com/abstract=555851. See also Dan
Hunter, Culture War, 83 TEX. L. REV. 1105, 1106 (2005) (arguing that the cultural
backlash against intellectual property rights is centered in part on the open source
movement); Jennifer M. Urban, Legal Uncertainty in Free and Open Source Software
and the Political Response, http://www.ssrc.org/wiki/POSA (follow “Legal Uncertainty

242 OREGON LAW REVIEW [Vol. 85, 183

Torvalds, whose name and affiliation with the open source camp
are well-known, does not travel and speak regularly. He orchestrates
the Linux kernel development from his office. His communications
and his actions, however, have great import. But he is not the fount
of indirect voice for the open source camp, in part because his focus
is functional: evolving and improving the Linux kernel.

Several others might qualify for the lead role as a fount of indirect
voice for the open source camp, and in reality there is no single such
person, but I will use the example of Eric Raymond. His writings
have been highly influential, and his web site, at the time of this
writing, describes that his primary role is to travel and speak to
evangelize FOSS.185

The examples of prominent figures in the FOSS movement could
continue for many pages. The discussion could also include
corporate representatives from firms such as Red Hat and IBM, as
well as some prominent law professors.186 The point is not to
enumerate all prominent sources of indirect FOSS voice, but to
illustrate that the movement includes this effort, and that it is
significant.

The message by advocates within each camp support FOSS
generally, but emphasize different aspects. Stallman’s advocacy is
poignantly political.187 He presents the message that freedom to
share software is an absolute necessity to engender self-
determination with one’s computing resources.188 His view
envisions this freedom as so important that it requires reversing
traditional software licensing practices and generally upending
notions of intellectual property protection.189 As a result, his

in Free and Open Source Software and the Political Response” hyperlink) (last visited
July 19, 2006).

185 See Raymond, supra note 54.
186 See, e.g., Clint Boulton, Free Software Foundation Lawyer Eben Moglen Wants to

Wipe Out What He Calls the “Scourge” of Proprietary Software, SERVERWATCH, May
27, 2005, available at 2005 WLNR 8437893 (reporting remarks by Columbia University
Law School Professor Eben Moglen); Stanford Law Professor Raps Patents as Barrier to
Innovation, TECHWEB NEWS, Apr. 7, 2005, available at 2005 WLNR 5493753
(reporting Professor Lawrence Lessig’s remarks concerning the threat software patents
pose to FOSS).

187 See MOODY, supra note 60, at 29-30 (describing Stallman’s work as significant
because it “provides an ethical backdrop against which the entire free software and open
source story is unfolding”).

188 Id.
189 See ROSEN, supra note 114, at 107-09 (describing the objectives of the GPL

generally).

2006] Moderating the Rein over Software Users 243

advocacy leads with political arguments, although it is not devoid of
economic considerations.

Raymond’s writings, and I presume that his presentations resonate
his writings, emphasize economic and technical advantages he finds
in FOSS development and distribution.190 His pragmatic approach
to articulating the benefits of FOSS allows more room for some
tolerance of proprietary software. One of Raymond’s articles posits
criteria where FOSS should flourish, but leaves some space in the
software ecosystem for proprietary software.191 His writings
otherwise emphasize how FOSS development has structural
advantages that lead to superior software.192

The advocacy from both camps in the FOSS movement has the
common message of inviting exit to FOSS by proprietary software
users, even if the emphasized reasons for doing so are different.
Less relevant to this Article, but worth acknowledging, is that this
advocacy also helps recruit contributors to FOSS. As discussed in
Part III above, in some instances, FOSS contributions are indirect
exit when provided by a technologist moonlighting from a
proprietary software company. Recruiting volunteer technologists to
contribute to FOSS is related to inviting corporate users to switch to
FOSS: after the switch, the company may have its technologists
spend some work time contributing as an act of self-interest to help
the community behind the software flourish.193

If FOSS advocacy invites exit, it is important that the exit be
viable. The viability of the FOSS exit opportunity suffers if the
licenses are compromised. Worse, it may diminish confidence in the
FOSS licensing system. Thus, it is rational for the FOSS movement
to enforce its licenses. The section below reviews some of the FOSS
enforcement efforts and theorizes that these efforts also have indirect
voice effects.

190 See MOODY, supra note 60, at 144, 148-55 (describing Raymond’s background
and philosophies generally).

191 Raymond, supra note 63, § 10.
192 See MOODY, supra note 60, at 148-55.
193 See Cara Garretson & John Fontana, Real Deal, NETWORK WORLD, July 4, 2005,

available at 2005 WLNR 10973653 (reporting various in-house technology executives’
positive perceptions of FOSS, and quoting one CTO as stating, “I would encourage
CIOs, if you’re going to start using open source you should start thinking early what
you’re going to give back . . . It stops working if you don’t give back”).

244 OREGON LAW REVIEW [Vol. 85, 183

B. License Enforcement as Advocacy Through Legal Forums

FOSS license enforcement is an organized effort springing from
some of the same groups discussed in the preceding section. Its
structured and publicized character adds to its indirect voice effect.
This section will mention two FOSS license compliance efforts: one
centered in the United States, and the other in Europe. Both are
significant in that they have resulted in court cases. Both received
significant attention in the press that covers FOSS issues, which
includes occasional coverage from the major newspapers. Both
show the effectiveness of license enforcement to help support the
FOSS distribution system, and generally to provide indirect voice
about FOSS.

Stallman’s FSF and its affiliates again play a central role. The
FSF web site has a page dedicated to license compliance called the
Compliance Lab.194 It notes that it answers licensing questions from
the community, encourages those questions, offers its services as a
paid consultant, and “provides a general ‘knowledge infrastructure’
concerning the GNU GPL and Free Software licensing.”195

A linked page, entitled “Negotiating Compliance” discusses the
enforcement process when a violation is confirmed, with the FSF
noting that “the use of the word ‘negotiating’ in no way means that
the FSF will compromise the principles on which it is organized,
namely the necessity of creating and keeping software free.”196 The
FSF explains that in most cases a quiet contact resolves the problem,
either because the respondent was not aware of the violation, or
because she thought she was in compliance and realized that she was
incorrect. In recalcitrant cases, the FSF notes that it “has access to
the expert legal counsel and the legal resources of the Software
Freedom Law Center.”197

One of the free software camp’s most important advocates,
Professor Eben Moglen of Columbia University Law School, is
chairman of the Board of Directors of the Software Freedom Law

194 Free Software Foundation, Compliance Lab, http://www.fsf.org/licensing/
compliance.html (last visited July 19, 2006) (“The Compliance Lab has been an informal
activity of the Free Software Foundation since 1992 and was formalized in late 2003.
The Compliance Lab is our department handling the investigation of the GPL (and
LGPL) violations and subsequent enforcement when violations are confirmed.”).

195 Id.
196 Free Software Foundation, Negotiating Compliance, http://www.fsf.org/

licensing/dealt.html (last visited July 19, 2006).
197 Id.

2006] Moderating the Rein over Software Users 245

Center, as well as general counsel for the FSF.198 In his capacity
with the FSF, he has been involved in its compliance efforts, and his
report as an expert is part of the public record of one of the most
well-known GPL compliance cases.199 The case involved the dual
licensor MySQL. One of its business affiliates, Progress Software,
distributed MySQL’s GPL licensed software intermixed with its
complementary database software.200 However, Progress did not
supply the source code for its component, an alleged GPL violation
because the two software components were intermixed in such a way
that the GPL’s terms could be required to apply to the Progress
component.201 Professor Moglen’s expert declaration provided the
analysis explaining how this software interrelationship generated the
alleged violation.202 The case eventually settled203 after producing
only a short district court opinion that mentioned the GPL without
deep analysis of the license.204

Even though some hoped that the case would produce more court
discussion about the GPL, from a license compliance and indirect
voice perspective, the case succeeded in requiring Progress to
comply with the GPL by releasing the source code.205 The press
coverage and Internet publicity for the case was far beyond what is
normal for a licensing dispute between two relatively small suppliers
in a niche market.206 The case drew press coverage because FOSS

198 Software Freedom Law Center, Directors, http://www.softwarefreedom.org/
team.html (last visited July 19, 2006).

199 Moglen Declaration, supra note 56.
200 See Greg R. Vetter, “Infectious” Open Source Software: Spreading Incentives or

Promoting Resistance?, 36 RUTGERS L.J. 53, 129-30 (2005), for a brief history of the
MySQL litigation.

201 Id.
202 Moglen Declaration, supra note 56, at 7-11.
203 Peter Brown, Beyond SCO v. IBM: Other Legal Issues in the Open Source

Community, 808 PRACTISING L. INST. 103, 112 (2004) (describing the Progress Software
case and its settlement).

204 Progress Software Corp. v. MySQL AB, 195 F. Supp. 2d 328, 329 (D. Mass. 2002)
(order, at just over one page, granting in part and denying in part MySQL’s motion for
preliminary injunction).

205 Id.
206 See Henry W. (Hank) Jones III, How a Poor Contract Sunk an Open-Source Deal,

LINUX J., Aug. 1, 2002, available at http://www.linuxjournal.com/ article.php?sid=6025
(noting that, for a time, many described the case as the “first litigation testing the validity
and enforceability of the General Public License” and attributing the parties’ dispute to a
poorly implemented collaboration agreement). Further, the author posited that the “judge
found the GPL issue too uncertain to adjudicate in [the] litigation’s early, [preliminary
injunction] phase.” Id.

246 OREGON LAW REVIEW [Vol. 85, 183

philosophy, as embodied in the license, was at issue.207 Also, the
general view seemed to be that the case might provide the first “test”
for the GPL in a court. This possibility likely heightened interest.

The FSF license compliance program colors FOSS licensing
industry-wide. The program goes beyond GPL enforcement to
license commentary that discusses the FSF’s assessment whether
other licenses are compatible with the GPL.208 These determinations
indirectly promote the GPL and stand as a premonition. When GPL-
licensed software is mixed with software licensed under other terms,
the GPL’s terms implicate the mixed software and may require
compliance with the GPL, an effect that is popularly known as
“viral.”209 If the other software is non-GPL, it might be under a
FOSS license compatible with the GPL, in which case there is no
compliance problem. Intermixing with a noncompliant license could
lead to a license enforcement inquiry from the FSF.

The compatible license analysis is more necessary with the GPL
than other FOSS licenses because it is the most widely used license,
and among widely used licenses, it has the strongest infectious
scope. “Infectious” is the label I used in an earlier article to specify
the GPL’s conditions requiring that its terms extend to other
software when that other software, combined with the GPL-licensed
code, creates a derivative work in a copyright sense.210

The Hirschman exit and voice framework offers another
explanation for the purpose of the GPL’s strong infectious scope: it
heightens the indirect voice-carrying capacity of the license.
Because modern computing uses a layered model for software
functionality,211 the GPL’s terms might touch a wide variety of other
software, depending on the applications in question. The possibility
of the GPL license touching a wide variety of other software
increases the incentive of proprietary software license holders to
learn about the GPL. This mixes with the tendency of some to view
the GPL’s infectious terms as expansive, and the resulting notoriety
further heightens the indirect voice effect.

207 Id.
208 Free Software Foundation, supra note 44, at GPL-Compatible, Free Software

Licenses.
209 See Copyleft: Is Copyleft “Viral”?, WIKIPEDIA, http://en.wikipedia.org/wiki/

Copyleft (last visited Aug. 14, 2006).
210 Vetter, supra note 200, at 58 n.9, 65-66.
211 See Robert Plotkin, Computer Programming and the Automation of Invention: A

Case for Software Patent Reform, 2003 UCLA J.L. & TECH. 7, 38.

2006] Moderating the Rein over Software Users 247

The FSF’s license compliance program is GPL centered. It ranges
from license categorization for GPL compliance to specific
investigations and compliance enforcement assistance. The second
GPL license enforcement situation arose in Europe.

A Linux kernel developer located in Germany worked on software
related to the firewall subsystem in the kernel.212 Besides its
security value to a Linux-based operating system, this code was also
valuable to network hardware manufacturers. These manufacturers
could use the GPL licensed code to add security and other
capabilities. Some did so, but did not release the source code even
after distributing the executable software by selling their hardware
products, network switches, and other devices.213 The original
developer held sufficient copyright interest in the code base that he
was able to bring suit in a German court against the manufacturers.
In parallel with the suit, he launched a web site to chronicle the
progress of the enforcement effort.214

This effort resulted in the first court case upholding the GPL. A
German court found that the GPL restrained the switch
manufacturers and required them to release the source code as a
condition to the continued use of the software.215 Approximately a
year later, the developer was successful against another company in

212 See Gnumonks.org, LaForge’s Homepage, http://gnumonks.org/users/laforge (last
visited July 19, 2006) (noting that the developer, Harald Welte, contributes to a project
called “netfilter/iptables, [which] is the firewalling subsystem of the Linux 2.4.x kernel”).

213 Although it is a stereotype, as a general matter, hardware manufacturers are not
inclined to release low-level code and commands for controlling their devices. This
attitude undoubtedly led the switch manufacturers to use the GPL-protected code, but not
disclose the source code modifications they implemented to operate the code on their
proprietary hardware.

214 Gpl-violations.org Project, About the Gpl-violations.org Project, http://www.gpl-
violations.org/about.html (last visited July 19, 2006).

215 Landgericht Muenchen [LG] [Munich District Court] Apr. 2, 2004, Welte v.
Sitecom Deutschland GmbH, No. 21 O 6123/04, unofficial translation available at
http://www.jbb.de/judgment_dc_munich_gpl.pdf (holding by the District Court of
Munich that even without a formal agreement, Sitecom cannot distribute the software
without making the source code available); see also David Graber, German Court
Enjoins Developer for Failure to Comply with GNU License, 9 ELEC. COM. & L. REP.
(BNA) 410 (Apr. 28, 2004) (reporting that the preliminary injunction against Sitecom
“follows a series of recent out-of-court settlement agreements between the Netfilter
Project and firms making use of the code, including Fujitsu Siemens Computers GmbH
and Allnet GmbH”). The court also noted that distribution without source code
availability violated Welte’s moral rights under German copyright law. See Welte v.
Sitecom Deutschland GmbH. See also Vetter, supra note 7, at 670-84 (discussing the
relationship between FOSS licensing and the civil law copyright system of moral rights
that attach to creative works, including the rights of attribution and integrity).

248 OREGON LAW REVIEW [Vol. 85, 183

the German courts, and the developer has achieved significant
enforcement success with many other companies without going to
court.216 The developer’s web site presents the entire progression of
this enforcement effort,217 and the press noticed and reported these
cases.218

These ancillary effects of the enforcement results amplify the
indirect voice inherent in the compliance program. Not only does
the software ecosystem learn about FOSS as the cases receive
publicity, but the technical public learns that the important license
attributes of the FOSS exit opportunity can be preserved. Before this
first German court case, it was common to see in the press and
literature devoted to FOSS the indication that the GPL had not been
upheld by a court.219

The general public advocacy and license compliance efforts
discussed above create welcome locales for FOSS and enforce the
sanctity of those locales. If both efforts are effective, they buoy the
FOSS exit opportunity. However, another force can chill the
desirability of that exit: the risk of intellectual property
infringement. Both copyright and patent infringement issues
concern potential FOSS users. The SCO litigation highlighted the
copyright issues.220 The software patent issues spring from
differences in intellectual property protection under patent law
compared to copyright. The patent threat provided a very visible
forum for indirect voice about FOSS during the debate over the issue
of software patents that arose in the legislative process for the
European Union’s directive to harmonize certain aspects of its patent
law.

C. Lobbying and the European Union Software Patent Debate

FOSS indirect voice reached an apex to protect its exit option
from the perceived threat of the European Union’s directive to
harmonize, and allegedly strengthen, certain aspects of its patent law

216 See David Graber, German Court Enjoins Software Firm for Failure to Comply
with GPL License, 10 ELEC. COM. & L. REP. (BNA) 417 (Apr. 20, 2005) (reporting that
the developer “has negotiated more than [thirty] out-of-court settlements over the past
[fifteen] months”).

217 Gpl-violations.org. Project, supra note 214.
218 See supra notes 215-17.
219 See Jones, supra note 206.
220 See SCO Complaint, supra note 96; IBM Answer, supra note 96.

2006] Moderating the Rein over Software Users 249

related to software.221 While there are perhaps many reasons why
the FOSS community would rally against the EU patent directive, I
will focus on the inference that stronger patent protection for
software has the potential to limit the viability of the FOSS exit
option. The FOSS community’s analysis of the threat led to an
impressive effort against the EU directive. It engendered
tremendous indirect voice, implemented by activism of varying
degrees including formal lobbying. This activism served two
functions. First, it repelled the threat. Second, it helped spread the
message about the FOSS exit option.

The patent law threat arises because patent law provides a
separate source of intellectual property protection that can attach to
software. FOSS uses a licensing system that starts with copyright.
The copyright-based terms in a FOSS license create a zone of
functional freedom with the software, if one observes the license’s
conditions. In general terms, as long as contributions to FOSS
projects are well-vetted and do not impinge on a third party’s
copyright, FOSS licensing practices can clear rights within this zone.
No third party should be able to use copyright to win an intellectual
property infringement suit against the FOSS project if the developer
contributions are all truly their original work.222 Furthermore, in
copyright, independent development is a defense. Thus, even if
FOSS code is substantially similar to a hostile third party’s code,
true independent development is a defense to an infringement
action.223

221 See Commission Proposal for a Directive of the European Parliament and the
Council on the Patentability of Computer-Implemented Inventions, at 2, COM (2002) 92
final (Feb. 20, 2002), available at http://eur-lex.europa.eu/LexUriServ/site/en/
com/2002/com2002_0092en01.pdf [hereinafter Commission Proposal on Patentability].

222 Besides depending on original code contributions, the analysis that FOSS licensing
effectively clears a zone for functional freedom also requires that copyright’s derivative
work right not be infringed. Thus, a developer may put a project at risk by submitting
her original contributions along with proprietary modified code from a third party, where
the modifications are intermixed with her contributions. This contribution will likely
allow the third party to bring an infringement suit based on the derivative work right
available under U.S. copyright.

223 Generally stated, “substantial similarity” is a copyright law rubric that forms the
basis for an infringement action when copies are not identical. Making an identical copy
infringes the reproduction right, unless a copyright defense, such as fair use, is available.
Making a substantially similar version of the original also may infringe. The most basic
right of copyright, the reproduction right, allows one to exclude others from making
copies when no copyright defense exists. Liability would attach in the case where copies
are identical, but might also attach when copies are substantially similar.

250 OREGON LAW REVIEW [Vol. 85, 183

While the copyright terms in a FOSS license and smart practices
to screen code contributions can relieve a project from much of its
copyright infringement risk, managing patent infringement risk is
trickier because patents can arise independently to threaten a FOSS
project. Patent law essentially disregards independent development
that arrives after a patent’s effective date. A FOSS project takes
little comfort against the patent threat by separately conceiving and
implementing a method already patented by another. Thus, due to
the way patent law works, FOSS developers rightly worry about an
unknown patent inhibiting distribution of the software.

The risk of patent infringement is the inhibiting force. I will
sketch how this works at a high level, drawing the sketch against the
U.S. patent system. To threaten a FOSS technology, a patent must
be valid. Specifically, the claims asserted must be valid. A patent is
a document that ends with claims, numbered statements describing
the product or process of the invention using a range of styles,
conventions, and levels of detail. The claims define the scope of the
holder’s right to exclude. Patent holders write a variety of claims to
describe differing facets of the invention and obtain varying breadth
of claim scope. Broad claims are easier for defendants to invalidate,
but narrow claims in the same patent can remain valid even if the
broad claims are invalidated. Anyone who operates without
permission, in the scope of a single valid claim, infringes the
patent.224

In the United States, a patent claim must meet five criteria to be
valid; the U.S. Patent and Trademark Office (USPTO) initially
evaluates the claim during the patent application process, although
the claim can be reevaluated later by a court during an infringement
suit. Two of the five criteria, novelty and non-obvious subject
matter, are tests that compare the claim to the prior art.225 The other
three, eligible subject matter (sometimes called statutory subject
matter), utility, and disclosure, are also measured against the
claim.226 All five must be satisfied for the claim to be valid.227 The
prior art validity requirements implement the commonsense notion

224 35 U.S.C. § 271(a) (2000 & Supp. 2001-2003) (“[W]hoever without authority
makes, uses, offers to sell, or sells any patented invention, within the United States or
imports into the United States any patented invention during the term of the patent
therefor, infringes the patent.”).

225 Id. §§ 102-103.
226 Id. §§ 101, 112.
227 Id. §§ 101-103, 112.

2006] Moderating the Rein over Software Users 251

that the patent systems of the world should not grant exclusive rights
for a technology that already exists (novelty), or for trivial variations
of existing technology (nonobviousness).228 The paradigmatic
example of prior art is an existing patent document that discloses a
technology.229 Another example would be FOSS published on a
public web site.230

When a patent holder brings a patent infringement suit, she puts
the patent at risk in the sense that the defendant might discover
“new” prior art that invalidates the claims—”new” meaning that the
USPTO did not originally find the prior art. Nonetheless, the threat
of a patent infringement suit is a very difficult situation to face
because invalidating patent claims, if possible, can be expensive.
Patents that have survived invalidity challenges in litigation are the
most feared. If the claim(s) of such a patent cover a FOSS
technology, that patent holder has great leverage over the creators,
distributors, and users of the FOSS.231

Even patents not yet tested in litigation provide the holder with
significant leverage due to the legal cost necessary to defend an
infringement suit. If the holder wins the case, she is entitled to
damages that can accumulate rapidly. Moreover, willful
infringement allows for up to treble damages.232 The defendant
faced with a variety of broad patent claims is in a tough spot. Even
if she invalidates the broad claims by discovering new prior art, her
FOSS technology might still fit within the language of one of the
narrow claims, leading to infringement.

These functional realities about the patent system mix with the
following historical fact to frame the EU patent proposal debate: in
the late 1990s, case law in the United States expanded the scope of
eligible subject matter to include methods implemented by pure

228 Id. § 103.
229 Id. § 102(a)-(b); see e.g., U.S. Patent No. 6,738,905 (filed May 18, 2004) (an

example of a patent that would serve as prior art).
230 See Stephen M. McJohn, The Paradoxes of Free Software, 9 GEO. MASON L. REV.

25, 50-52 (2000) (arguing that systemically, and over the long run, FOSS may inhibit
patent infringement suits because open and available source code increases the chance
that litigants will discover patent-invalidating prior art).

231 See ROSEN, supra note 114, at 135-36, 289-90.
232 See 35 U.S.C. § 284 (“Upon finding for the claimant the court shall award the

claimant damages adequate to compensate for the infringement[;] . . . the court may
increase the damages up to three times the amount found or assessed.”).

252 OREGON LAW REVIEW [Vol. 85, 183

software.233 Eligible subject matter is the first of the five validity
criteria, and in this context, the question of statutory interpretation is
whether such methods are a “process.”234 While the domain of
patents is very broad, some subjects are not eligible for patent
protection. More precisely, there are a small number of narrow
exceptions from the very broad domain of patent-eligible subject
matter. The United States Supreme Court has acknowledged these
exceptions by remarking that the formula E=mc2 is ineligible subject
matter as a law of nature.235 Another exception is for “abstract
algorithms.”236 The United States case law revisions in the late
1990s eliminated a long-simmering doubt about the patentability of
methods implemented in software.237 This doubt was at its apex
when the claim(s) did not recite computing infrastructure and tie the
method to physical structure. With the doubt extinguished, the
floodgates opened in an upswing of United States patents for
methods implemented in software. This flood of software patents
creates a generally higher risk of patent infringement for FOSS, as
well as all licensed software in general. It also allows FOSS
competitors, such as Microsoft, to wield patents competitively
against FOSS if they so desired.238

233 See State St. Bank & Trust Co. v. Signature Fin. Group, Inc., 149 F.3d 1368, 1375
(Fed. Cir. 1998). The patent at issue in State Street claimed a computer system that
calculated asset values for a particular configuration of entities sharing participation in
pooled mutual funds. Id. at 1371; AT&T Corp. v. Excel Commc’ns, Inc., 172 F.3d 1352,
1353-54, 1360-61 (Fed. Cir. 1999) (extending the holding of State Street to a pure
process claim for a long-distance messaging technique to facilitate charge billing).

234 35 U.S.C. § 101 (“Whoever invents or discovers any new and useful process,
machine, manufacture, or composition of matter, or any new and useful improvement
thereof, may obtain a patent therefore”) (emphasis added).

235 Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980) (noting that “[t]he laws of
nature, physical phenomena, and abstract ideas have been held not patentable”) (citations
omitted). Even if the formula was eligible, you could not patent it today because it is in
the prior art.

236 Diamond v. Diehr, 450 U.S. 175, 185-86 (1981) (noting that statutory subject
matter does not include unapplied, abstract mathematical formulas or algorithms, the
latter defined as a “procedure for solving a given type of mathematical problem”)
(quoting Gottschalk v. Benson, 409 U.S. 63, 65 (1972)).

237 See Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the
Software Industry, 89 CAL. L. REV. 1, 11-14 (2001).

238 See Daniel Lyons, Linux Scare Tactics, FORBES.COM, Aug. 2, 2004,
http://www.forbes.com/home/enterprisetech/2004/08/02/cz_dl_0802linux.html (reporting
that fears regarding patent suits against Linux users are on the rise, but may be the result
of suggestions by those hoping to cash in by offering insurance).

2006] Moderating the Rein over Software Users 253

From the perspective of the FOSS community, its opposition to
the EU patent proposal arose from the concern that the EU proposal
would cause an increase in software patents issued by European
nations similar to the increase that followed the case law changes in
the United States. In addition, the FOSS community was concerned
that the European patent law would follow the United States in
allowing broader patent claims that would create a greater threat of
infringement, assuming validity. The proposal also became a forum
to debate software patents generally.

The situation in Europe before the proposal was somewhat
ambiguous. EU member states grant patents individually. In
parallel, and outside the purview of the EU, many European nations
are members of the European Patent Convention, a treaty-based
organization that established the European Patent Office (EPO),
allowing inventors to file in a central location and streamline the
process to obtain patents in multiple European nations.239 Europe’s
federated system of patent protection resulted in differing
interpretations at the national level, principally in Germany and the
United Kingdom, as to whether methods implemented in software
were eligible subject matter.240

Given the uncertain status of software patents, the EU proposed a
directive to harmonize member states’ administrative procedures and
local law. Its self-described goal is given in the quote below:

[T]he legal rules as interpreted by Member States’ courts should
be harmonised and the law governing the patentability of
computer-implemented inventions should be made transparent.
The resulting legal certainty should enable enterprises to derive the
maximum advantage from patents for computer-implemented
inventions and provide an incentive for investment and
innovation.241

A directive is a binding command to the member states, but each
nation must transpose the directive into its local law, typically with
legislation at the member state level. The EU Software Patent
Directive (“Directive”) never made it that far. The complex,

239 See http://www.european-patent-office.org/epo_general.htm (last visited July 21,
2006) (noting that the EPO was “[e]stablished by the Convention on the Grant of
European Patents (EPC) signed in Munich 1973, [and that] the EPO is the outcome of the
European countries’ collective political determination to establish a uniform patent
system in Europe”).

240 Commission Proposal on Patentability, supra note 221, at 2.
241 Id. at 17-18.

254 OREGON LAW REVIEW [Vol. 85, 183

multistage, EU “codecision” legislative process extended over many
years, but the record shows FOSS community impact at each step of
the way.

Oversimplifying, the EU Parliament consistently insisted on
Directive amendments to aid FOSS, but these amendments were not
acceptable to the Council and the Commission, the other two
“branches” of the EU.242 Eventually recognizing an impasse, the
Directive died, preserving the status quo so that neither side could
gain advantage through the Directive.243 I will not review the entire
legislative process, or try to trace the proposed amendments at each
stage. The important point is to note the FOSS community voice in
the process.

Issued in 2002, the original Directive text acknowledged
legislative process input by the FOSS community and industry:

The individual responses were dominated by supporters of open
source software, whose views ranged from wanting no patents for
software at all to the “official” position of the Eurolinux Alliance
which is to oppose patents for software running on general-
purpose computers. . . . [A]lthough the responses in [the industry]
category were numerically much fewer [than] those supporting the
open source approach, there seems little doubt that the balance of
economic weight taking into account total jobs and investment
involved is in favour of harmonisation along the lines suggested . .
. .244

In the first pass through the EU Parliament, its members proposed
a variety of amendments to the Directive, acknowledging input from
the FOSS community.245 These revisions triggered procedures

242 See generally Robert Bray, The European Union “Software Patents” Directive:
What Is It? Why Is It? Where Are We Now?, 2005 DUKE L. & TECH. REV. 11 (profiling
changes proposed to the Directive).

243 Nikki Tait, European Position Is Left Patently Unclear, FIN. TIMES, Sept. 19,
2005, available at 2005 WLNR 14734897.

244 Commission Proposal on Patentability, supra note 221, at 4.
245 European Parliament Committee on Legal Affairs and the Internal Market, Report

on the Proposal for a Directive of the European Parliament and of the Council on the
Patentability of Computer-Implemented Inventions, 20, COM(2002) 92—C5-
0082/2002—2002/0047(COD) (June 18, 2003), available at
http://www2.europarl.eu.int/omk/sipade2?PUBREF=-//EP// NONSGML+REPORT+A5-
2003-0238+0+DOC+PDF+V0//EN&L=EN&LEVEL =2&NAV=S&LSTDOC=Y (“The
rapporteur has also carefully weighed the arguments put forward by industry and the
open source community.”).
 The rapporteur also reported “being harassed by lobbyists.” Minutes, Proceedings of
the Sitting, 2004 O.J. (C 77) 18, 19, available at http://europa.eu.int/eur-
lex/lex/LexUriServ/site/en/oj/2004/ce077/ ce07720040326en00180019.pdf.

2006] Moderating the Rein over Software Users 255

whereby the EU Council eventually adopted a proposal that reverted
to the original approach and transmitted it to the EU Parliament in
2005, where the Parliament once again proposed amendments.246
This second batch of amendments caused the Directive-killing
impasse. They included requirements to monitor the effects of the
Directive on the open source software community and ensure the
availability of patents on a reasonable and nondiscriminatory royalty
basis for interoperability and licensing in the public interest.247 The
explanatory statement accompanying the amendments makes clear
that the EU Parliament disagreed with the Council and the
Commission as to the impact of the Directive’s approach, and
wanted to make sure that the Directive did not expand software
patent availability in Europe.248 Lobbying by FOSS advocates
facilitated the Parliament’s understanding of the threat increased
software patenting poses to FOSS.249 This indirect voice helped
stalemate the political process over the Directive, preserving the
status quo.250

Thus, besides repelling the threat of expanded software patenting
in Europe, the lobbying effort against the EU Directive is similar to
the general FOSS activism and license compliance efforts in that it
illustrates indirect voice within the Hirschman framework. All of

246 See European Parliament Committee on Legal Affairs, Recommendation for
Second Reading on the Council Common Position for Adopting a Directive of the
European Parliament and of the Council on the Patentability of Computer-Implemented
Inventions, 4-22, 11979/1/2004—C6-0058/2005—2002/0047(COD), available at
http://www2.europarl.eu.int/omk/sipade2?PUBREF=-//EP// NONSGML+REPORT+A6-
2005-0207+0+DOC+PDF+V0//EN&L=EN&LEVEL =2&NAV=S&LSTDOC=Y.

247 See id. at 14.
248 See id. at 22-24.
249 See, e.g., Bray, supra note 242, ¶ 21 (noting that the first reading of the proposal

occurred “against the background of fierce and unconventional, but extremely effective,
lobbying by the open source community”); Free Software Foundation Europe, Software
Patents in Europe: Memorandum on Software Patentability,
http://www.fsfeurope.org/projects/swpat/memorandum.en.html (last visited July 21,
2006) (arguing that “the Council of the European Union frustrated . . . democratically-
reached [anti-software-patent] positions—they restored the original proposal with
unlimited patentability of software”); Open Source Leaders Slam Patents, BBC NEWS,
Feb. 3, 2005, http://news.bbc.co.uk/1/hi/technology/ 4229689.stm (reporting that Linus
Torvalds stated that software patents were a problem for FOSS).

250 See News, Marks & Clerk Patent and Trade Mark Attorneys, The Software Patents
Directive Is Dead—Long Live Software Patents! (July 6, 2005), http://www.marks-
clerk.com/attorneys/news_one.aspx?newsid=55 (noting that while “[t]he rejection means
that there is no formal harmonisation across the European Union . . . it also means that
patent protection is at least no worse than it has been: current practices of both the
European Patent Office and the EU member states are maintained”).

256 OREGON LAW REVIEW [Vol. 85, 183

these efforts provide a background signal from which direct voice
takes form, allowing software users either to threaten exit to FOSS,
or in aggregate (but without necessarily coordinating their activities),
to impart a disciplining force that operates along many dimensions
of the proprietary software licensing model.

V
EXIT AND VOICE IMPLICATIONS FOR FOSS LICENSING

As Parts I through IV demonstrate, FOSS is laced with
mechanisms of exit and voice that converge on the software user.
This framework anchors a new perspective for the interactions and
influences channeling FOSS at a critical juncture: the user adoption
decision. Joining other explanations for the FOSS phenomenon,
Hirschman’s framework enables a better understanding of the
movement and the licensing that underlies it.

Within each situation discussed above, the analysis uncovers the
means by which exit and voice cooperatively, or individually,
influence an important aspect of FOSS. In each context, the
corresponding part catalogs the implications from the Hirschman
perspective. This Part’s purpose is to show some overarching
implications with three tentative conclusions. First, this framework
adds support to the thesis put forth elsewhere that FOSS generation
and adoption will continue to be most successful for platform
software technologies, especially where market leveraging behavior
by incumbent firms triggers antimonopoly passions. Second, in the
competition among licenses for future mindshare and codeshare,
licenses with greater synergy between exit and voice may continue
to have an advantage. Third, courts should consider the Hirschman
framework when evaluating legal issues related to FOSS licensing.

A. The Exit and Voice Framework May Channel FOSS to Platform
Applications

Certain scholarship tries to describe the class of applications for
which FOSS will emerge or be successful. Some of this work
suggests that FOSS licensing is more effective when used for
platform technology,251 such as operating systems, Internet

251 See Raymond, supra note 63, § 19 (discussing a high payoff for use of open source
in an application that “establishes or enables a common computing and communications
infrastructure”).

2006] Moderating the Rein over Software Users 257

“middleware,” and network protocols. This may spring from notions
of complementary economics.252 A platform technology can enable
a wider range of complements. If economic activity with those
complements can generate spillover or contributions back to the
platform, a FOSS-enabling cycle might result.253 Another theory
focuses on the development process, specifically the benefits of
source code availability. Under this logic, FOSS is most conducive
to platform applications because these have the greatest possibility
for “massive peer review”—a euphemism for the scrutiny a large
developer and user base can supply to the internal workings of
FOSS.254

The exit and voice framework supports these arguments, adding a
new perspective as to why FOSS is likely to find success with
platform applications. Certain software application classes may
generate pent-up voice, either because the dominant products are
from a company with market leverage or power, such as Microsoft,
or because the applications have a personal milieu, such as e-mail or
web browsing. FOSS exit may release the pent-up voice in direct or
indirect form.

During the early 2000s, FOSS, and in particular the GNU/Linux
operating system, became known as the biggest threat to
Microsoft.255 During this time, the United States federal courts also
adjudged Microsoft to be a monopoly in certain markets.256 The
FOSS movement is too complex to characterize as a mere Microsoft

252 See Joel West, How Open Is Open Enough? Melding Proprietary and Open
Source Platform Strategies, 32 RES. POL’Y 1259, 1259-66 (2003).

253 See id.
254 See Raymond, supra note 63, §§ 11, 13-14, 16.
255 The press reports characterizing FOSS as Microsoft’s biggest threat are too

innumerable to catalog. The recognition, however, goes a step further to Microsoft itself,
who both in the press and in its Securities and Exchange Commission (SEC) filings has
acknowledged the threat. Microsoft Corp., Quarterly Report (Form 10-Q), at 31 (Apr.
22, 2005), available at http://www.shareholder.com/visitors/
ActiveEdgarDoc.cfm?id=3633254&f=rtf (“[T]he popularization of the non-commercial
software model continues to pose a significant challenge to our business model. . . . To
the extent open source software gains increasing market acceptance, sales of our products
may decline, we may have to reduce the prices we charge for our products, and revenue
and operating margins may consequently decline.”). See also Steve Lohr, Pursuing
Growth, Microsoft Steps Up Patent Chase, N.Y. TIMES, July 30, 2004, at C3 (suggesting
that Microsoft’s plans to increase patent filings were in response to growing competition
from open source products).

256 See United States v. Microsoft Corp., 253 F.3d 34, 50-78 (D.C. Cir. 2001)
(affirming the lower court’s finding of monopolization of the personal desktop operating
system market).

258 OREGON LAW REVIEW [Vol. 85, 183

backlash. The mechanisms of exit and voice, however, may be
uniquely concentrated against a monopoly. Although exit from a
monopoly may not be available, there is a desire for exit if product
or service quality or price, that is, overall value, is or becomes
dissatisfying or less satisfying.257 When exit is not fully available,
voice directed to a monopoly is an option, but it may or may not be
effective.

In the United States, there has traditionally been a stigma against
monopoly.258 At times, United States law and society was more
inclined to police monopolies strictly.259 An antimonopoly bias can
heighten the intensity of voice directed to monopolies or near-
monopolies, such as Microsoft. Thus, when a viable exit opportunity
arises, this generates publicity. This publicity is the pent up,
unsatisfied voice that now has something to talk about: an exit
possibility.

The switching costs and network effects that produce user lock-in
to the Windows operating system provided Microsoft the
opportunity to leverage its position.260 Its leveraging generated
voice among its users and the public at large as the significance of
Windows grew with the explosion in desktop computing and the
Internet. In the original Hirschman framework, voice is the only
mechanism against a monopoly because customers have no
alternatives.261

Microsoft’s Windows monopoly, however, was never complete.
There were always alternatives, such as Unix or Apple, but exit to
those systems was less viable than exit to GNU/Linux. Apple only
has a market niche because its operating system only runs on its
hardware. The Unix systems are expensive compared to the lower-
level computers used for Windows. Moreover, in comparison to
GNU/Linux, and to Windows, the Unix systems charged expensive
software royalties.262 GNU/Linux, in comparison, while not a

257 See HIRSCHMAN, supra note 1, at 26-27, 55-61.
258 See HERBERT HOVENKAMP, FEDERAL ANTITRUST POLICY: THE LAW OF

COMPETITION AND ITS PRACTICE § 2.1-2.2 (3d ed. 2005) (reviewing the history and
ideology of American antitrust policy, notably the 1950s to 1960s Warren Era that was
“openly hostile toward innovation and large scale development”).

259 Id.
260 See Ferguson, supra note 88, at 66.
261 HIRSCHMAN, supra note 1, at 33, 55.
262 See WEBER, supra note 37, at 39 (noting that Unix royalty rates in the late 1980s

and early 1990s surpassed $100,000).

2006] Moderating the Rein over Software Users 259

perfect substitute for Windows, had one critical attribute that earlier
exit options did not: it runs on virtually all the same personal
computer hardware that supported Windows.

The FOSS exit from Microsoft is often perceived as attractive
economically, but it may also scratch a political itch for many users.
It is generally accepted that, at the time of this writing, the
GNU/Linux operating system is better suited for technically
sophisticated users.263 This eliminates many potential switching
users, mostly nontechnical personal users, but leaves a great mass of
institutional users and tech-savvy personal users with a feasible
option to exit. The institutional users purchase in volume, so their
potential exit is of particular note to proprietary software providers
such as Microsoft. In one example of such an exit, the city of
Munich, Germany chose a GNU/Linux approach for its many
thousands of computers despite fierce competition by Microsoft for
the business.264 This transaction was widely reported in the press,
and the voice tingeing this exit had a dimension of international
political intrigue: Munich exited Microsoft’s Windows product265 at
a time when the European Union competition authorities were
adjudicating an enforcement action against Microsoft.266

Other political itches related to software might come from
personal applications: the computing tasks that occupy almost all
developed-country users, such as e-mail, web browsing, and creating
or using documents, presentations, or data. These applications are
political in the sense that their ubiquity creates the likelihood for
voice when dissatisfaction occurs. The most poignant example is

263 Stephen K. Kwan & Joel West, A Conceptual Model for Enterprise Adoption of
Open Source Software, in THE STANDARDS EDGE: OPEN SEASON (Sherrie Bolin ed.,
2005, forthcoming) (manuscript at 7, available at http://www.cob.sjsu.edu/
OpenSource/Research/KwanWest2005.pdf).

264 Technology Briefing Software: Microsoft Loses Munich Contract to Linux, N.Y.
TIMES, May 29, 2003, at C6 (reporting that Munich officials planned to switch over
14,000 computers to the Linux operating system, and quoting Munich’s Mayor as saying
that the city’s decision “doesn’t just ensure more provider independence for its I.T.
infrastructure, but also sets a signal for more competition in the software market”).

265 Munich’s exit was not a complete exit. It will require a lengthy process of several
years to switch over from the Windows computers to the GNU/Linux systems. In that
sense, Munich will continue as a Microsoft customer for many years. Moreover, it may
continue to use other Microsoft products apart from the reported project.

266 See Commission Decision (EC) No. C(2004)900 final of 24 Mar. 2004, available
at http://europa.eu.int/comm/competition/antitrust/cases/decisions/37792/ en.pdf (finding
that a protocol to authenticate users for purposes of granting access to computing
resources had been extended beyond the relevant standard).

260 OREGON LAW REVIEW [Vol. 85, 183

political voice from e-mail spam and malware, which resulted in a
federal law hoping to curb spam267 and in a bevy of state bills aimed
at malware when the problem became particularly acute in the early
2000s.268 The potential for voice builds and amplifies when an
application is prominent and widely used—its problems are
sometimes equally ubiquitous and the populace turns to politicians
for solutions.

If a widely used platform application has greater attendant voice
potential, this heightens the likelihood of releasing a pent-up
response when a FOSS exit becomes available. A FOSS alternative
application will allow some users a noisy exit, triggering the perhaps
latent or muffled voice from these or other users.269 Customers who
do not switch may feel better because they have a FOSS alternative
with its advantages of no royalties and functional freedom. Even if a
user is not inclined toward FOSS tenets, FOSS applications can offer
her an exit alternative with intriguing characteristics if she becomes
dissatisfied with her current application. As a result, the original
ubiquitous application provider(s) may respond with improvements,
or begin to address the direct voice it might have previously ignored.

Beyond Windows, one could posit a list of platform application
classes that may be future FOSS targets. Notables on the list would
include Internet browsers,270 e-mail user interfaces,271 and relational

267 Controlling the Assault of Non-Solicited Pornography and Marketing Act of 2003,
Pub. L. No. 108-187, 117 Stat. 2699 (requiring labeling of unsolicited commercial e-mail
messages, opt-out instructions, and a physical mailing address of the sender to be
included with the messages, while prohibiting the use of deceptive subject lines and false
headers).

268 See Susan W. Brenner, State Cybercrime Legislation: Disseminating Viruses and
Other Harmful Code, in DATA SECURITY AND PRIVACY LAW: COMBATING
CYBERTHREATS § 15:20 (Kevin P. Cronin & Ronald N. Weikers eds., 2005).

269 Hirschman discusses the concept of alert and inert customers and relates the
concept to unused voice in reserve. See HIRSCHMAN, supra note 1, at 24, 32.

270 See John Markoff, Mozilla Plans Faster Growth for Its Browser, N.Y. TIMES, Aug.
3, 2005, at C5 (reporting that Internet Explorer competitor, Mozilla, recently created a
for-profit subsidiary to provide fee-based service and support for its Firefox product, and
noting that some estimates place Firefox’s market share at approximately ten percent).

271 Novell’s recent acquisition of Ximian, Inc. includes collaboration software called
Evolution, now pitched as a direct competitor to Microsoft Outlook. See William M.
Bulkeley, Novell’s Linux Bet Could End Its Losing Streak, WALL ST. J., Apr. 1, 2004, at
B3. See also Novell, E-Mail, Calendaring and Collaboration, Novell Evolution 2,
http://www.novell.com/products/desktop/features/evolution.html (last visited July 24,
2006) (noting Microsoft Exchange server support is included).

2006] Moderating the Rein over Software Users 261

databases.272 The first two have a personal milieu, and the third is
almost as important a platform as the operating system.273

In sum, platform software applications have a greater potential to
engender voice. The traditional reasons used to differentiate the
economic nature of software apply; network economic effects with
resulting lock-in phenomena, along with the sometimes high costs
and risks associated with switching, give users the impression of
being overly tied to a vendor or technology. These effects are
heightened when a platform software technology is involved, as
opposed to a software product or technology that does not underlie
numerous complementary systems. The product or technology at
issue is often highly differentiated and complex. As a result, if the
product or technology becomes less than fully satisfying, the user’s
ties to the product may engender voice because exit is not as easy as
exiting a commodity product or service.274

Compound these effects with one of two influences (the vendor is
perceived as monopolistic or the application is highly integrated into
the daily life of the citizenry, such as with e-mail), and there is an
even greater chance for voice. While exit to FOSS still entails the
burdens of switching, the exit may give greater release to the voice
because it may be perceived as an exit to an alternative with a lesser
degree of restrictive future lock-in effects.275

272 See Jay Lyman, Open Source Databases Gaining Ground, Analysts Say,
NEWSFORGE, Apr. 19, 2004, http://software.newsforge.com/article.pl?sid=04/04/
14/1347227 (noting that open source database leaders such as MySQL, PostgreSQL, and
Berkeley DB continue to gain market shares in both Unix/Linux and Windows
environments).

273 The relational database space, compared to operating systems, is more oligopolistic
on both the proprietary and open source side. Thus, there is more opportunity for exit
among vendors within the proprietary class of applications. Moreover, as of this writing,
the FOSS alternatives are still adding functionality to establish themselves as a true
equivalent to enterprise strength relational databases such as the products from Oracle
Corporation. To the extent database users migrate to FOSS databases, this may be more
of an exit mechanism to reduce software royalty costs than a voice mechanism.

274 Hirschman’s framework acknowledges that “[t]he willingness to develop and use
the voice mechanism is reduced by exit, but the ability to use it with effect is increased
by it.” HIRSCHMAN, supra note 1, at 83. Against exit and voice, Hirschman posits
loyalty as a mechanism that holds exit at bay, at least for a time, and accordingly
activates some voice by otherwise exiting users who presumably are vocal while
delaying exit. Id. at 78, 83. Such loyalty might be a reasoned, calculated act by users.
Id. at 79. In the case of software lock-in from network effects and switching costs, the
loyalty seems forced. Even so, however, forced loyalty may generate voice as long as
some of the forced loyalists tend to be vocal as they remain loyal.

275 See Ferguson, supra note 88 (positing that open source “severely limits the
possibility of propriety ‘lock-in’—where users become hostage to the software vendors

262 OREGON LAW REVIEW [Vol. 85, 183

Post-exit, the new FOSS user is locked in to the FOSS
development community for the product or technology. This is
possibly seen as a lesser evil (or more likely seen as a “good”),
however, because most FOSS licensing practices guarantee that the
user can practice software self-help if she is sufficiently technically
proficient, or try to contribute to the development effort or influence
the software using the voice mechanisms of the FOSS community.
FOSS voice is thought to offer a greater degree of transparency than
the voice mechanisms traditionally employed by proprietary
software technologies, even if they do not necessarily guarantee
greater effectiveness in terms of implementing a particular user’s
desires.276

Given the potential for greater release and exercise of voice in a
platform application, the insights from the Hirschman framework
suggest that FOSS applications will be more likely to occur or be
successful with platform applications. Upon exit to FOSS in
platform applications, the synergistic effects of both exit and voice
found in the FOSS license take a greater potency.

whose products they buy—and therefore eliminate incentives for vendors to employ the
many tricks they traditionally use on each other and on their customers”).

276 The degree of transparency for user voice is likely dependent on the difference
between user voice mechanisms for proprietary software versus FOSS. FOSS
development frequently shows more transparently what the developing organization does
with user feedback, and why it does so. Besides taking customer feedback via sales,
marketing, and customer support, technology companies often initiate, facilitate, or
support “user group” organizations. Within Hirschman’s framework, user groups allow a
company to lubricate the voice mechanism. See HIRSCHMAN, supra note 1, at 42-43.
However, in many companies, exit is easier for customers than voice, especially
customers of commoditized goods or services. Id. at 39-41. Voice requires the
user/customer to develop a message and find a way to convey it to the company. Id. at
80. To the extent this is more difficult than exit, Hirschman posits that organizations lose
the potentially valuable disciplining force of voice. Id. Accordingly, a smart
organization facilitates voice-providing measures. With proprietary software
development, there is an incentive, and a practice, to take a lot of input, and then decide
internally what features to implement. TORVALDS & DIAMOND, supra note 12, at 229-
33. The reasoning behind such decisions is explained at a high level of generality in
order to placate the disappointed or minimize disclosures to competitors. FOSS software
development could follow a similarly cloistered model. Many projects do not, however,
because the development history inherently is open. Any user/developer submitting the
actual code for a new capability can share with the rest of the community any reasons for
rejection, or the fact of specific rejection. The transparency arises in part from
development tools that tend to store all communications about the code and the process
in an Internet-accessible, centralized repository. On the other hand, proprietary software
vendors often provide similar online resources for non-source-code technical
information, and for interacting with developers.

2006] Moderating the Rein over Software Users 263

B. Exit and Voice as Competitive Assets for FOSS Licenses

The voice mechanism discussed in Part II is the FOSS license.
Both its legally operative language and its ancillary materials
implement and carry indirect voice for the particular FOSS tenets
expressed in a given license. Its substantive provisions enable the
FOSS-licensed software to provide users exit from an equivalent
proprietary-licensed application. Thus, many FOSS licenses involve
both mechanisms.

A license’s indirect voice is not necessarily correlated with the
legal effect sought. Licenses of greater legal effect might have
minimal precatory voice, as in the case of the corporate-style
licenses,277 or thundering precatory voice, as in the case of the GPL.
Since FOSS licenses facilitate user exit from proprietary-licensed
software, yet also have a voice delivering potential, this raises the
question of the role of this indirect voice in the proliferation or
popularity of a particular license. On a broader scale, recognizing
voice in licenses within the Hirschman framework queries the role of
such voice, in conjunction with exit, in the processes that influence
license generation, selection and competition in organized and
informal ways.

FOSS licenses proliferated as FOSS gained popularity278 for at
least three reasons. First, the character of the FOSS community
inherently suggests writing new licenses. Enterprising programmers
who start a FOSS project often care deeply about the terms for
sharing and ensuring functional freedom for the software. They are
going to write new code, so why not write a new license as well?
Second, the OSI indirectly promotes license proliferation through its
certification program. The success of the program in attracting
licenses for evaluation against the OSD has created an increasing

277 See supra Part II.A.1.
278 See Brian W. Carver, Share and Share Alike: Understanding and Enforcing Open

Source and Free Software Licenses, 20 BERKELEY TECH. L.J. 443, 457 (2005).

264 OREGON LAW REVIEW [Vol. 85, 183

number of OSD-certified licenses.279 Third, some corporations who
release software under FOSS terms write their own licenses.280

License proliferation has become a problem for many in both the
free software and open source camps of the FOSS community in the
mid-2000s.281 This concern led the OSI to change their certification
process by adding three new requirements. New licenses will be
approved only if they meet the original criteria and are also “(a) non-
duplicative, (b) clear and understandable, and (c) reusable.”282
Moreover, the OSI will classify existing and future licenses into
Preferred, Approved, and Deprecated. In essence, the OSI added a
new sorting step to its license evaluation.283

Viewed through Hirschman’s framework, the OSI process shows
structural features favoring licenses that facilitate greater exit
opportunity. This is particularly the case for the original conditions.
Besides the basic FOSS tenets of free redistribution and available
source code, the OSD criteria requires that a license not discriminate
against persons or groups, fields of endeavor, products, or
technologies.284 These antidiscrimination provisions have the effect
of ensuring that approved licenses enable the widest possible use of
the software.285 Thus, FOSS licensed under an OSD-approved
license presents an exit opportunity to a wide audience thanks to the
antidiscrimination criteria.

The new OSI conditions implement a license hierarchy, which can
be hypothesized as a process that isolates and amplifies a few

279 OSI established a License Proliferation Committee to discuss the increasing
number of licenses in use. Open Source Initiative, supra note 118. Among the
proposals under consideration, committee members will be assigning current OSI-
approved licenses to a tiered structure, where Tier 3 licenses remain approved but no
longer recommended for future use. See Open Source Initiative, License Proliferation,
http://www.opensource.org/docs/policy/ licenseproliferation.php (last visited July 24,
2006) [hereinafter OSI LP].

280 Open Source Initiative, supra note 118.
281 See, e.g., OSI LP, supra note 279 (highlighting a project to sort licenses into three

tiers). See also supra note 118 and accompanying text.
282 I-Technology Viewpoint: Open Source Is Open to Debate, COLDFUSION

DEVELOPER’S J., http://coldfusion.sys-con.com/read/49143_p.htm (last visited Oct. 6,
2006).

283 See Open Source Initiative, supra note 118.
284 See OSD, supra note 42.
285 Without the antidiscrimination provisions, one can imagine licenses that prohibit

use of the software in activities that a FOSS developer finds disagreeable. An example
of a noncompliant term given in the OSD is a license provision prohibiting use of the
software “in a business, or from being used for genetic research.” Id.

2006] Moderating the Rein over Software Users 265

licenses from the growing cacophony of licenses submitted for OSD
approval. This new structural feature of the OSD gives credence to
voice, demanding that licenses be non-duplicative to minimize the
cacophony, and “clear and understandable” to amplify, or at least
effectively transmit, indirect voice. By elevating some licenses over
others, the indirect voice embedded in these licenses takes on greater
volume. Both the original OSI conditions as well as the new criteria
favor licenses with greater enabling capacity for one mechanism or
the other.

The OSI license sorting process can be thought of as a
competition among licenses. A similar evaluation process occurs
within the entire FOSS community.286 In either case, the question
presents itself as to the degree indirect voice in a license helps its
adoption rates or OSI classification success. The most widely
adopted FOSS license, the GPL, has a high degree of indirect voice.
But this correlation cannot be taken as causation because there are
many other explanations for the GPL’s adoption success, the most
obvious of which is that it was first.287 On the other hand, there is a
sense that the strong indirect voice in the GPL is a part of its
adoption success. This has been observed in a different way by
David McGowan in noticing that the GPL has a trademark-like
effect.288 To function as a mark or a brand, the GPL embodies
views about how software should be handled. There is a baseline
that people expect for GPL-licensed software. When programmers
select a license for a new FOSS project, they may desire to endorse
those baselines and increase the indirect voice in the GPL.

Generalizing and evaluating indirect license voice beyond
trademark-like effects, however, raises empirical questions that do
not produce simple answers. FOSS licenses serve as informational
devices. When a user is familiar with a license’s terms, as many are

286 See Josh Lerner & Jean Tirole, The Scope of Open Source Licensing, 21 J. L.
ECON. & ORG. 20, 24-31 (2005) (describing attributes of open source licenses that
influence their likely use on FOSS projects, and the decision-making process of a
potential FOSS user generally).

287 Bert J. Dempsey et al., Who Is an Open Source Software Developer?, 45 COMM.
ACM 67, 71 (2002) (reporting from a study of contributor submissions to the non-kernel
components in the GNU/Linux operating system that over half of the software
submissions identify the GPL as the applicable license).

288 McGowan, supra note 184, at 33-34 (suggesting that the GPL terms may not
necessarily be optimal for the developers who use them, but are employed in a trademark
sense as a quasi-brand identity espousing certain development procedures or ideological
beliefs developers may find more important than the terms themselves).

266 OREGON LAW REVIEW [Vol. 85, 183

with the GPL, she can evaluate the exit opportunity for the GPL-
licensed software without necessarily rereading the license.
Whatever indirect voice the license triggers may also register with
the user. The empirical question concerns the degree to which this
indirect voice influences the user’s adoption decision for the
software.289 Software functionality is often layered, complex, and
hard to quantify. Thus, the adoption evaluation is the result of many
factors, the license attributes being a subset of these factors.290 The
substantive license terms are its exit attributes, and those same terms
and any precatory language comprise the license’s indirect voice.
While this Article’s scope does not include the empirical inquiry into
the degree this indirect voice influences the user’s adoption, such an
influence might exist, especially in the case of the GPL.

To pose the question of voice influence across all FOSS licenses
expands the inquiry. In many cases, the user evaluating the software
may not be familiar with the FOSS license’s terms. Thus, a second
empirical question arises: is the user more likely to read the FOSS
license as opposed to reading a proprietary license? One reason to
think that the answer is “yes” is due to the reputation of FOSS
licenses. During the first half of the 2000s the FOSS movement
gained considerable headway. In that time, the legal practice
literature and general press coverage of FOSS exploded. Some of
these materials cautioned users about the due diligence necessary to
use FOSS or incorporate it into an organization’s information
technology operations.291 Thus, the potential adopting user may be
conditioned to undertake greater due diligence for FOSS licenses.
Whether this translates into a greater likelihood to read the licenses
is hard to gauge. If proprietary mass-market software licenses for
Windows-based software or web sites are rarely read, one reason
might be that users have an expectation of their terms: a
nonexclusive grant to use the software on only one computer or for
only one user. Whether a similar expectation of homogeneity exits
for FOSS licenses is also hard to gauge, although there is recognition

289 Joel West & Jason Dedrick, The Effect of Computerization Movements upon
Organizational Adoption of Open Source 20-23 (Feb. 28, 2005) (unpublished paper,
http://www.cob.sjsu.edu/OpenSource/Research/WestDedrick_SI_2005.pdf) (finding little
support for the notion that the ideology embodied in the GPL influenced its adoption, but
that increased user choice and control did influence adoption).

290 See Gomulkiewicz, supra note 66, at 898-900.
291 See generally Laura A. Majerus, Avoiding and Curing Open Source Problems, 808

PRACTISING L. INST. 189 (2004) (describing policies and internal software auditing
methods to manage FOSS licensing issues for companies using FOSS).

2006] Moderating the Rein over Software Users 267

of two broad classes of licenses: attribution-only licenses and
licenses patterned after the GPL, which includes corporate-style
licenses in this Article’s license categorization.

On a continuing basis, then, programmers and organizations are
selecting or creating FOSS license terms in an organic process
standing in contrast to the OSI’s formal evaluation of licenses
against the OSD. From the perspective of the Hirschman
framework, if the FOSS license is an institutional mechanism
synergistically mixing exit and voice, the strength, proportion, and
quality of the mix in each particular license may contribute, at some
level, to that license’s adoption success.

C. Evaluating FOSS Licensing Issues in Light of the Framework

A policy implication of the Hirschman framework is that the
beneficial effects of voice to discipline or recuperate a firm are not
realized in some instances because there are insufficient institutional
mechanisms to effectively allow voice expression. As discussed
above, the FOSS license provides a new mechanism with these
beneficial effects. It presents a synergistic mix of exit and voice
with disciplining effects on proprietary software providers. The exit
opportunity offered by the FOSS license provides voice via the
threat of exit. FOSS licensed software provides competition
springing from a politically different conception of software and its
production. This novelty generates the exit opportunity and gives it
a unique voice. To the extent the FOSS disciplining force on
proprietary software is beneficial, FOSS licensing issues should be
evaluated with this beneficial effect in mind.292 Decision makers,
including courts, should assess FOSS licenses in light of the
synergistic, reinforcing effects of exit and voice that supply the
disciplining force. For close cases of interpretation or doctrine, the
FOSS license disciplining effect should be a factor tending toward
an outcome that preserves this effect.293

292 This approach parallels in a broad way the influence the exit and voice framework
has exerted on the issues surrounding corporate governance. See Blair, supra note 5, at
3-4, 32, 39-43 (arguing that Hirschman’s exit and voice framework organizes an
evaluative approach for corporate law reform proposals).

293 The general rubric that preserving FOSS exit and voice synergy should be a factor
inclining decision makers in close licensing issues assumes, in the case of judges, that
policy considerations should inform judicial decisions, at least at some level. In
proposing this rubric, I recognize that the jurisprudential assumption is not without
controversy and does not always apply, depending on the nature of the question
presented. Moreover, I do not think it necessary to peg the rubric along the continuum

268 OREGON LAW REVIEW [Vol. 85, 183

The first potential application of a doctrine that factors in the
beneficial disciplining effects of FOSS concerns copyright’s doctrine
of joint ownership, which, if applied to a FOSS project, would
dissolve the web of interdependent copyright permissions that secure
the software to FOSS development.294 The interdependency of the
software components assembled into an operable whole combines
with the coordination among developers to allow for at least the
possibility of joint ownership arguments, depending on the license,
its surrounding context, and factual inferences flowing from these.295
In addressing this possibility, the primary question is whether the
FOSS license discourages reasonable claims of joint ownership by a
single developer. If not, such a claim would allow a developer to
license the software on whatever terms she desired, including
proprietary terms.

From the perspective of Hirschman’s framework, a successful
joint ownership claim has the potential to dilute the voice that rings
from the FOSS license and the software in at least two ways. First,
the finding of joint ownership would be a noticeable event in the
FOSS community, and probably in the greater software ecosystem.
A FOSS license “failing” to support the software and its
development process would hurt confidence in FOSS licensing, and
the particular license at issue would thereafter have a questionable
reputation.296 Second, unlike an allowable fork under a FOSS
license, a successful joint ownership claim lets an enterprising joint
owner produce a proprietary or dual-licensed version of the software
without any attribution to its FOSS origins.297 This has the potential

that runs from rules to standards, because I merely seek to demonstrate that exit and
voice synergy is a plausible factor. Its exact invocation and influencing strength will
likely vary for judges and policymakers, and vary based on the issue presented.
Regardless of its application, it should be counted.

294 If the FOSS licenses underlying the project also grant patent permissions, a finding
of joint ownership for copyright in the integrated software does not necessarily imply that
joint ownership will exist for the patent rights. Joint ownership arguments for patent
rights, especially those which spring from United States doctrine on inventorship, are
beyond this Article’s scope, other than to note that individually licensed patent rights
might still apply even if copyright ownership in the software were found to be joint.

295 See NIMMER, supra note 9, § 1:4.
296 Among the FOSS licenses cataloged in Part II.A, the corporate-style licenses

generally seem to provide the greatest resistance to joint ownership arguments in that
their language and structure clearly show the intent to retain individual copyrights and
license rights under the FOSS scheme, rather than an intent to jointly own the rights.

297 While attribution-only licenses have not been my focus in this Article, a developer
using software licensed under an attribution-only license, such as the BSD-style licenses,

2006] Moderating the Rein over Software Users 269

to dilute voice that would otherwise emit from the FOSS version if
the proprietary version becomes popular, which it might become if
the enterprising developer has distribution advantages in niche
markets or other technology to couple with the proprietary version.
FOSS software helps carry the movement’s message because the
licensing approach is novel. If the FOSS software’s distribution is
lessened because a joint owner successfully distributes a privatized
version, its voice-carrying potential is lessened. Under this
reasoning, applying the rubric to preserve the synergistic exit and
voice effects means inclining against a finding of joint copyright
ownership.

The second potential application I will illustrate for the exit and
voice framework is known in the FOSS community as the “web
services” issue. The FOSS licensing scheme, and in particular the
GPL, was put in place before the Internet expanded dramatically in
the 1990s.298 The FOSS license conditions trigger upon a
distribution as that term is understood in copyright law.299 Running
FOSS software internally and delivering its functionality to users
over the web is generally not thought to be a distribution of the
source code, although the answer depends on technological factors
as well.300 An example is the Google search engine. It is reported to
run a modified Linux-kernel-based operating system, but it does not
make the source code for its modifications available.301

Some within the FOSS community are interested in licenses that
will create incentives or requirements to apply FOSS licensing to
Internet-deployed modifications of FOSS software that companies
run on internal computers.302 One license uses an approach that

has a similar opportunity to create a proprietary version, but would still need to retain the
attribution notices.

298 See MOODY, supra note 60, 26-30 (discussing the development of the GNU
generally); GPL, supra note 7.

299 In this context (and in most other contexts), violation of the distribution right
follows from the violation of the reproduction right. See 2 MELVILLE B. NIMMER &
DAVID NIMMER, NIMMER ON COPYRIGHT § 8.02[A] (2006) (noting that “it is the act of
copying that is essential to, and constitutes the very essence of all copyright
infringement,” including the distribution right).

300 When software runs on a server connected to the Internet, delivering an application
to users via web browsers, the source code is not transferred across the network to the
remote user. As a result, there is not a distribution of the source code.

301 See Google’s Summer of Code Pays Students to Do Open Source, supra note 89.
302 See Free Software Foundation, GPLv3 Rationale Document 1.1, Do No Harm,

http://gplv3.fsf.org/rationale (last visited July 24, 2006) (discussing the treatment of

270 OREGON LAW REVIEW [Vol. 85, 183

intertwines a technological constraint and a licensing constraint,
requiring software released with an ability to view the source code
via the web interface to be redistributed with that capability intact.303
Another license deems distributions to include communicating
applications across the Internet as web services.304 It was
anticipated that version three of the GPL would add provisions to
handle web services.305 The January 2006 draft of version three
allows those who deploy the license to include web services
provisions similar to the first example given in this paragraph, but
the main text of the license does not otherwise explicitly provide for
web services.306

Labeling FOSS that underlies a web service increases indirect
voice for the FOSS licensing model. This suggests a minimalist
approach for web service, which is to require attribution of the
underlying FOSS software. A more expansive approach would
create incentives for disclosure of source code modifications. If the
mechanism successfully induced source code disclosure, the code
would be available to the FOSS development community, with some
voice-carrying effect through the FOSS license that induced the
disclosure. Moreover, the disclosed code would potentially improve
the exit option the software affords, which can translate to a more
viable exit threat as voice.

The question in either case is whether a FOSS license, enforced
under copyright, or under contract if an assent or agreement is
present, will be successful in bringing legal force to the package of
incentives that might cause a user or developer to release
modifications to FOSS software. There are a number of doctrinal
questions here, including the simmering issue of whether FOSS

software designed for public use on network servers and differing community views on
the matter).

303 Free Software Foundation, supra note 44 (discussing the Affero General Public
License, which is the GPL with added section 2(d) covering “the distribution of
application programs through web services or computer networks”). See also Affero
Project, Affero General Public License Version 1, ¶ 2(d),
http://www.affero.org/oagpl.html (last visited Sept. 19, 2006).

304 Rosenlaw & Einschlag, Open Software License (“OSL”) Version 3.0, ¶ 5,
http://www.rosenlaw.com/OSL3.0.htm (last visited July 24, 2006).

305 See, e.g., China Martens, GPL 3 Likely to Appear in Early 2007, INFOWORLD
DAILY, Aug. 4, 2005, available at 2005 WLNR 12297689 (noting that the “FSF needs to
determine the situation when what’s being redistributed is not a copy of the software
itself but a service based on that software”).

306 GPLv3, supra note 7, ¶ 7(d).

2006] Moderating the Rein over Software Users 271

software licenses are or should be binding notices (sometimes
described as conditional copyright permissions) or full agreements.
If display of interfaces via web services is not a distribution of the
underlying source code, the distribution right under copyright law
might not be available to support the conditional permission
approach. Other rights might be available, such as the display right
under copyright for audiovisual works embedded in the software
interface, but thus far FOSS licenses have paid minimal attention to
the display right.307 Moreover, not all FOSS software will have
audiovisual works that qualify for copyright protection. The
disclosure condition could be tied to the reproduction or derivative
work right, but enforceability is an issue when use is only internal,
even though private violations of these rights are actionable.

Basing FOSS licensing conditions on the distribution right helps
clarify the enforceability of the baseline FOSS conditions. If a
contractual agreement can be obtained, this may enhance
enforceability. In any approach, inducing disclosure of
modifications underlying web services may be viewed as an attempt
to gain greater leverage over FOSS users by FOSS licensing. Some
may analogize this to the leverage of the GPL’s infectious terms,
which have been subject to copyright misuse claims.308 These new
doctrinal questions for web services sit against an existing range of
issues for FOSS licensing, most of which find scant guidance in
United States case law.

From the perspective of the Hirschman framework, the present
goal is not to resolve this sampling of the doctrinal issues raised by
web services in FOSS licenses. Like the first application to joint
copyright ownership, the point is to preserve the synergistic effects
of exit and voice. In the web services context, this means supporting
the mechanisms that try to bring legal force to identify or disclose
internal FOSS software modifications deployed as web services.

307 Besides FOSS licensing paying scant attention to the display right, in general it is
perhaps the least familiar of the copyright bundle. R. Anthony Reese, The Public
Display Right: The Copyright Act’s Neglected Solution to the Controversy over Ram
“Copies,” 2001 U. ILL. L. REV. 83, 84-85 (arguing that the display right is not familiar,
and describing its unique applicability to works, or aspects thereof, transmitted over
computer networks).

308 See Plaintiff Daniel Wallace’s Memorandum on Motion for Summary Judgment,
Wallace v. IBM Corp. et al., No. 1:05-cv-678/RLY-VSS, slip op. (S.D. Ind. May 16,
2006), available at http://www.groklaw.net/article.php?story= 20050703144738557
(asserting, in an argument embedded in a pro se complainant’s antitrust price fixing case,
that the GPL is copyright misuse).

272 OREGON LAW REVIEW [Vol. 85, 183

The framework should not command the decision, but should be an
influencing factor, especially to the extent policy concerns inform
the decision.

These two applications of the exit and voice framework for FOSS
licensing issues are exploratory. They put aside the full detail of
how decision makers should incorporate the framework into
licensing and policy decisions. Even with these limitations, the
framework’s identification of the FOSS license as a unique,
institutional mechanism synergistically reinforcing exit and voice
garners support for the framework as a viable decision-influencing
factor. Beyond this prospective application, the framework suggests
a method by which to compare FOSS licenses in the competition that
occurs among them in the community and marketplace, and may
contribute to the explanations of the tendency for FOSS applications
to find success in platform software technology.

CONCLUSION

As social movements in genesis, FOSS and the labor movement
exist apart in time and technology. The labor movement pitted itself
against dominant industries of its era. The free software advocates,
organized through software, licenses, and the Internet, pit FOSS
against influential forces in its era, proprietary software providers.
Despite the many obvious differences, the two movements share
similarities that include a natural fit with elements of Hirschman’s
framework in Exit, Voice, and Loyalty. That framework has been
applied to various issues in employment and labor, and this Article
suggests its applicability to FOSS by demonstrating the exit and
voice mechanisms in a variety of FOSS contexts. Voice in FOSS
licensing corresponds to the political emphasis of the movement.
The exit opportunity corresponds to the open source camp, whose
emphasis supports economic considerations such as high quality
software and bridging the FOSS and proprietary world. This leads to
exit alternatives for software users, generating disciplining effects
from exit and the threat of exit. FOSS licensing provides a variety of
exit opportunities depending on the type of license, with varying
degrees of associated direct and indirect voice and unique user
participation in the development process. Other forms of voice
include extracurricular FOSS contributors and the programs of
advocacy, license enforcement, and lobbying that spread the FOSS
message, setting up future contributors and adopting users. The
Hirschman framework shows that for a complex good, such as

2006] Moderating the Rein over Software Users 273

software, both exit and voice can exert disciplining influences on
incumbent suppliers. Sometimes these influences are synergistic,
and a policy lesson from Exit, Voice, and Loyalty is that institutional
mechanisms that enable such synergy are to be encouraged.

274 OREGON LAW REVIEW [Vol. 85, 183

