
563

The Collaborative Integrity of Open-Source Software

Greg R. Vetter∗

This Article analyzes legal protection for open-source software by

comparing it to the venerable civil law tradition of moral rights. The
comparison focuses on the moral right of integrity, with which one may object
to mutilations of her work, even after having parted with the copyright and the
object that embodies the work. The parallel apparatus in open-source licensing
is conditional permission to use a copyrighted work. The conditions include
that source code be available and that software use be royalty-free. These
conditions facilitate open-source collaborative software development. At the
heart of both systems is the right for creators to control the view that a work
presents. In the open-source system, this is the Collaborative Integrity of open-
source software. The history and legacy of moral rights help us better
understand Collaborative Integrity in open-source software. The right of
integrity in some international jurisdictions may apply to software, thus raising
questions whether it hurts or helps open-source software. Building from these
insights, this Article evaluates whether the Collaborative Integrity in open-
source software deserves protection as a separate right, just as the right of
integrity developed separately from pecuniary copyright in civil law
jurisdictions.

∗Assistant Professor of Law, University of Houston Law Center (“UHLC”); Co-Director,

Institute for Intellectual Property and Information Law (“IPIL”) at UHLC; biography and
additional background available at: http://www.law.uh.edu/faculty/gvetter. It is relevant to this
Article that my background includes a Master’s degree in Computer Science and full-time work
experience in the business-to-business software industry from 1987 to 1996. Research for this
Article was supported by summer research grants from the University of Houston Law
Foundation and a grant from the University of Houston’s New Faculty Research Program. I also
thank UHLC’s IPIL Institute and its sponsors for support of my endeavors at UHLC. My thanks
to UHLC students Jason Williams and Kristin Brown for comments, suggestions, discussion,
and research assistance on this Article. Also, my thanks to workshop participants at UHLC,
Marquette University Law School, and the Louisiana State University Law Center for helpful
discussion of some of the issues in this Article. In addition, I am thankful for exceptionally
capable support provided by the staff of the UHLC’s John M. O’Quinn Law Library, including
Peter Egler and Nicole Evans, and by the UHLC’s Legal Information Technology Department,
including Robert A. Brothers and Chad J. Kitko. I am also indebted to the Barco Law Library at
the University of Pittsburgh School of Law, and to Marc Silverman for graciously making the
Barco Law Library available for my research. My special thanks to Craig Joyce, Mike Madison,
Mark Lemley, and David McGowan for helpful comments. I wish to dedicate this Article, my
first as a law professor, as with all my efforts, to my spouse and life partner, Pamela “Christy”
Parham-Vetter, M.D.

564 UTAH LAW REVIEW [2004: 563

TABLE OF CONTENTS

I. INTRODUCTION ... 566
II. THE SIGNIFICANCE OF SOURCE CODE .. 578

A. Software and Source Code ... 578
1. The Three Elements of Computing: Instructional Composites, Operating
Systems, and Computing Results .. 578
2. The “Software as Recipe” Metaphor for the Three Elements 580
3. Source Code: The Link Between the First and Second Element 582

B. Traditional Intellectual Property Protection for.. 586
Software and Source Code .. 586

1. Trade Secret Protection ... 587
2. Copyright Protection ... 588
3. Patent Protection ... 590

III. OPEN-SOURCE SOFTWARE.. 594
A. The Open Source Approach ... 594

1. Ideological Origins.. 596
(a) Early Computing and Software Development .. 596
(b) Sketching the Open-Source Approach.. 598

2. Projects and Products.. 603
(a) The Growing Trove of Open-Source Software... 603

(i) Linux: A Privately Provisioned Public-Good Operating System 605
(ii) The Apache Web Server: Unrestricted Open-Source Software 609

(b) Characteristic Applications for Open-Source Software...................................... 613
3. Commercial Mainstreaming .. 614

B. Open-Source Software Licenses and Collaborative Development................... 620
1. Open-Source Licenses for Non-Software Subject Matter 620
2. Pre-Open-Source Sharing (Typically) Without Source Code 621
3. The Open-Source Approach in a Collaborative Software Project............... 623

(a) Traditional Coordination of Team-Developed Software..................................... 625
(b) Coordination of Open-Source Collaboration.. 627

4. Open-Source Licenses and Their Impact on Collaboration......................... 632
(a) Diverging License Terms in Open-Source Software .. 633
(b) Collaborative Implications of Licensing Differences ... 640

5. Other Legal Considerations for Open-Source Software Licenses 644
IV. AUTHORS’ AND ARTISTS’ MORAL RIGHTS ... 649

A. Moral Rights in the Civil Law Tradition .. 650
1. European Development.. 652
2. United States Avoidance .. 656

B. Right of Integrity .. 660
C. Moral Rights in Software ... 662

1. Attenuated Implementation and Coverage... 663
2. Discord with the Open-Source Approach? .. 665

V. COLLABORATIVE INTEGRITY FOR OPEN-SOURCE SOFTWARE................................ 670
A. Comparative Implications and Insights into the .. 670
Open-Source Approach ... 670

1. Reputation.. 671
2. Values and Beliefs.. 675
4. External Effects.. 679
5. Effects on the Author, Artist, or Open-Source Programmer........................ 682

No. 2] OPEN-SOURCE SOFTWARE 565

B. Right of Integrity Enforcement of the Open-Source Approach 684
C. The Potential for Collaborative Integrity .. 687

1. Rationale for Collaborative Integrity .. 689
2. The Contours of Collaborative Integrity.. 696

VI. CONCLUSION .. 699

LIST OF FIGURES AND TABLES

Figure 1: The Three Elements of Computing ..585

Figure 2: Contributed Code to the Hypothetical “GoneOutdoors”
 Open-Source Software..601

Table 1: Key Open-Source Software License Variances638

Table 2: Correspondence Among Certain Moral Rights and Open-Source

Software Licenses...672

566 UTAH LAW REVIEW [2004: 563

I. INTRODUCTION

When I finished grad school in computer science I went to art
school to study painting. A lot of people seemed surprised that
someone interested in computers would also be interested in
painting. They seemed to think that hacking and painting were very
different kinds of work—that hacking was cold, precise, and
methodical, and that painting was the frenzied expression of some
primal urge.

Both of these images are wrong. Hacking and painting have a
lot in common. In fact, of all the different types of people I’ve known,
hackers and painters are among the most alike.

What hackers and painters have in common is that they’re both
makers. Along with composers, architects, and writers, what hackers
and painters are trying to do is make good things.1

Since the dawn of computing a half-century ago, software has hidden its

human-readable source code in non-readable “object code” that only the
computer can interpret. In part, software development technology made object
code the preferred mode of distributing and running software. The law,
however, reinforced this preference. Before the advent of software copyright
protection, developers used trade secret law to protect software, relying on
non-readable object code to protect the secret.2 Even after the advent of

1Paul Graham, Hackers and Painters, at http://www.paulgraham.com/hp.html (May 2003)

(displaying Web site self-published essay from guest lecture given by Mr. Graham at Harvard).
Among programmers, “hacker” means a skilled computer enthusiast or programmer, and is
generally a favorable label in that community, but the popular press often uses the term
derogatorily to designate one who seeks to “gain unauthorized access to computer systems for
the purpose of stealing and corrupting data.” Webpodedia, Hacker, at http://www.webopedia
.com/TERM/h/hacker.html (last visited Jan. 26, 2004).

2Peter S. Menell, Envisioning Copyright Law’s Digital Future, 46 N.Y.L. SCH. L. REV. 63,
74 (2002–03); Thomas M. Pitegoff, Open Source, Open World: New Possibilities for Computer
Software in Business, BUS. L. TODAY, Sept.–Oct. 2001, at 52 (“While source code is protected by
copyright and may be protected by patent, in practice source code is protected by trade secrecy.
Even if the source code copyright is registered . . . , only a small portion of the code need be
filed on registration, while most of it typically remains secret.”); Pamela Samuelson, CONTU
Revisited: The Case Against Copyright Protection for Computer Programs in
Machine-Readable Form, 1984 DUKE L.J. 672, 673 (“[S]oftware manufacturers generally market
only machine-readable forms of programs, thereby withholding not only their ideas, but much or
all of the manner in which those ideas are expressed.”). See also PETER WAYNER, FREE FOR ALL:
HOW LINUX AND THE FREE SOFTWARE MOVEMENT UNDERCUT THE HIGH-TECH TITANS 9 (2000)
(noting commercial software vendor’s preference to guard source code for trade secret
protection), available at http://www.wayner.org/books/ffa (last visited Feb. 4, 2004); Chris
DiBona et al., Introduction to OPENSOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION 1, 2
(Chris DiBona et al. eds., 1999) [hereinafter OPENSOURCES] (noting commercial software
vendor’s preference to guard source code for trade secret protection).

No. 2] OPEN-SOURCE SOFTWARE 567

software copyright protection, lawyers advised clients to conceal source code
to prevent others from copying and infringing it.

Software development is changing.3 The Internet allows far-flung
development teams to collaboratively create software.4 Market forces
demanding interoperability and standardization encourage disclosure of
traditionally concealed software elements, such as data structures, code, files,
and other internal elements. Traditional intellectual property law—copyright,
trade secret, and patent—has failed to keep pace. But a recent innovative use of
copyright and licensing law has established a new alternative regime: open-
source software.5 Open-source programmers share source code royalty-free
and collaborate in ad hoc, self-organizing, intercorporate units to develop

3See FREDERICK P. BROOKS, JR., THE MYTHICAL MAN-MONTH: ESSAYS ON SOFTWARE

ENGINEERING, ANNIVERSARY EDITION 278–89 (1995) (recounting changes in software
engineering and software industry during prior twenty years and projecting future changes).

4David McGowan, Legal Implications of Open-Source Software, 2001 U. ILL. L. REV. 241,
251 (2001); Audris Mockus et al., Two Case Studies of Open Source Software Development:
Apache and Mozilla, 11 ACM TRANSACTIONS ON SOFTWARE ENG’G AND METHODOLOGY, No. 3,
at 309, 310 (2002). See generally Yochai Benkler, Coase’s Penguin, or, Linux and the Nature of
the Firm, 112 YALE L.J. 369, 383, 434–36 (2002) (postulating formal model describing
collaborative peer production for information products, and conditions under which the model
will tend toward such peer production, including the necessity of organizing communications
among peers, typically through the Internet).

5See James Bessen, What Good Is Free Software?, in GOVERNMENT POLICY TOWARD OPEN
SOURCE SOFTWARE 12, 13 (Robert W. Hahn ed., 2002), available at http://aei-brookings.org/
admin/pdffiles/phpJ6.pdf (last visited Feb. 4, 2004); Patrick K. Bobko, Open Source Software
and the Demise of Copyright, 27 RUTGERS COMPUTER & TECH. L.J. 51, 75–76, 80–81 (2001);
Robert W. Gomulkiewicz, How Copyleft Uses License Rights to Succeed in the Open Source
Software Revolution and the Implications for Article 2B, 36 HOUS. L. REV. 179, 181–82, 185–86
(1999); Marcus Maher, Open Source Software: The Success of an Alternative Intellectual
Property Incentive Program, 10 FORDHAM INTELL. PROP. MEDIA & ENT. L.J. 619, 620, 637–38
(2000); McGowan, supra note 4, at 242–43; Stephen M. McJohn, The Paradoxes of Free
Software, 9 GEO. MASON L. REV. 25, 28 (2000); Shawn W. Potter, Opening up to Open Source, 6
RICH. J.L. & TECH. 24, ¶¶ 7–8 (Spring 2000), at http://law.richmond.edu/jolt/v6i5/
article2.html#h1; Daniel B. Ravicher, Facilitating Collaborative Software Development: The
Enforceability of Mass-Market Public Software Licenses, 5 VA. J.L. & TECH. 11, at *30, *63
(2000), available at http://www.vjolt.net (last visited Feb. 4, 2004); Ira V. Heffan, Note,
Copyleft: Licensing Collaborative Works in the Digital Age, 49 STAN. L. REV. 1487, 1491–92
(1997).

568 UTAH LAW REVIEW [2004: 563

software.6 They do so under legal norms specified in a generally applicable
license.7 Within these legal norms, there is a set of license conditions I call the
open-source approach.8 Beyond the legal norms, however, community norms
and a unique open-source culture influence the collaborative effort.9 Thus,
from a broad view, open-source software is research methodology, production
method, business model, social statement, and industrial rebellion, all rolled
into one “movement.”

6See Open Source Initiative, OSI Position Paper on the SCO-vs.-IBM Complain, at

http://www.opensource.org/sco-vs.ibm.html#seismic (last visited Jan. 26, 2004) (describing use
of small distributed groups for “Internet style” of coordinating large programming teams).
Raymond contrasts the “Internet style” with traditional software development.

Since the 1960s, the Internet and Unix hackers had been pioneering a style of
software engineering which reversed the premises of industrial software
development. Instead of centralization in large programming teams, the Internet
style used small distributed programming groups. Instead of process control and
hierarchy, the Internet style used peer review and open standards. Most importantly,
the Internet style abolished secrecy in favor of transparency and what came to be
called “open-source” code.

Id. (citation omitted).
7See Joseph Scott Miller, Allchin’s Folly: Exploding Some Myths About Open Source

Software, 20 CARDOZO ARTS & ENT. L.J. 491, 496–97 (2002); Pitegoff, supra note 2, at 52–54;
Jason B. Wacha, Open Source, Free Software, and the General Public License, COMPUTER &
INTERNET LAW, Mar. 2003, at 20, 20–22 (describing open-source approach as “one of the fastest
growing, ever adapting, and most commonly misunderstood licensing schemes in the world”).

8As I use the term “open-source approach” in this Article, I mean to refer only to software
and its source code. While I briefly note later that the open-source approach may apply beyond
software to content generally, see infra Part III.B.2, this interesting extension of the approach is
not my focus. There are a variety of licenses that define the legal norms, and significant variance
among widely used licenses. See GNU Project—Free Software Foundation, Various Licenses
and Comments about Them, at http://www.gnu.org/licenses/license-list.html (last visited Feb. 4,
2004) (listing and discussing licenses, including General Public License (“GPL”), one of the
most popular licenses authored by founder of Free Software Foundation); Open Source
Initiative, The Approved Licenses, at http://opensource.org/licenses/index.html (last visited Jan.
26, 2004) (listing and discussing licenses); Bruce Perens, The Open Source Definition, in
OPENSOURCES, supra note 2, at 180–85 (describing, comparing and contrasting several popular
licenses, noting that some substantial ways in which they differ are whether (1) they require
future distributions of modified or unmodified software to include source code, (2) they prohibit
users and redistributors from charging royalties for use, and (3) they require continued
propagation of the same license terms for software or modified works based on software); Mark
H. Webbink, Open Source Software—Bridging the Chasm, in 22ND ANNUAL INSTITUTE ON
COMPUTER LAW 663, 674 (2002) (listing various licenses) (Mr. Webbink is senior vice president
and general counsel for Redhat, Inc., a leading Linux distributor). As I will describe, what I call
the open-source approach requires, among these differences, that the source code go with the
software, that royalties are prohibited, and that the same terms propagate; which is most closely
aligned with the GPL as compared to other licenses.

9Robert W. Hahn, Government Policy Toward Open Source Software: An Overview, in
GOVERNMENT POLICY TOWARD OPEN SOURCE SOFTWARE 1, 2 (Robert W. Hahn ed., 2002),
available at http://aei-brookings.org/admin/pdffiles/phpJ6.pdf (last visited Jan. 27, 2004);
Maher, supra note 5, at 631–35; McGowan, supra note 4, at 260–61.

No. 2] OPEN-SOURCE SOFTWARE 569

The social benefit of the movement is not in question. Much of the
Internet runs on open-source software.10 Many companies have open-source
business strategies.11 An open-source operating system, Linux,12 competes with
Microsoft in certain markets.13 Open source has energized the debate about
software quality while reliability problems still challenge traditional
software.14 Accessibility to the source code plays a key role in providing these
social benefits. This accessibility is created and enforced by the innovative
open-source approach.15

The open-source movement, therefore, to some degree rests on a nascent
legal foundation, or at least a nascent use of preexisting legal mechanisms. In
this Article, I comparatively assess this foundation. The assessment contrasts

10Joseph Feller et al., Making Sense of the Bazaar: 1st Workshop on Open Source Software

Engineering, 26 ACM SIG SOFTWARE ENG’G NOTES No. 6, at 51, 51 (Nov. 2001) (“Many Open
Source products (the Apache HTTP server, . . .) are category leaders in the Internet application
space, and others (Linux, . . .) are becoming increasingly popular as components in enterprise
computing architectures.”); Wacha, supra note 7, at 20.

11Pitegoff, supra note 2, at 54.
12Since this is the first time I refer to the operating system popularly known as Linux, I

pause to explain why I am not using the more technically correct name GNU/Linux. Richard
Stallman is a key founder of the Free Software Foundation and is considered the primary
progenitor of “free” software. McGowan, supra note 4, at 260–61. Stallman’s term for what I
and others call open-source software is “free” software, where “free” means freedom to use and
modify, not necessarily zero cost to acquire. RPS, GNU, The Free Software Definition, at
http://www.gnu.org/philosophy/free-sw.html (last visited Feb. 4, 2004). There is a debate in the
open-source community about which label is best. See David Wheeler, Why Open Source
Software/Free Software (OSS/FS)? Look at the Numbers!, § A.1.3, at http://www.dwheeler.com/
oss_fs_why.html (revised Dec. 31, 2003) (summarizing positions on each side of debate, where
proponents of term “free” software, including Stallman, find moral or social reasons why
software should be supplied under what I call the open-source approach, and where proponents
of term “open-source” advocate that practical considerations substantiate open-source approach,
such as superior capabilities, cost or quality of software, and noting that “to some people, the
connotations and motives are different between the two terms”).

But I put that debate aside to discuss the naming issue. Stallman advocates that Linux is
properly called GNU/Linux. To understand his proposition, one must realize that what is
popularly called the Linux operating system is an aggregated and integrated set of software
components that interoperate. The label GNU/Linux provides attribution for more than the
kernel of the operating system developed by Linus Torvalds. The GNU part recognizes that
many significant components of the operating system are from Stallman’s Free Software
Foundation and originated before Torvalds began developing his kernel. Benkler, supra note 4,
at 371 n.3. Some would probably argue that I help perpetuate the problem by using the popular
name, but I do so for the reader’s convenience while recognizing that “the complete GNU/Linux
operating system is what everyone has in mind” Id.

13Patrick K. Bobko, Linux and General Public Licenses: Can Copyright Keep “Open
Source” Software Free?, 28 AIPLA Q.J. 81, 85–86 & n.20 (2000); Peter Brown & Lauren
McCollester, Should We Kill the Dinosaurs or Will They Die of Natural Causes?, 9 CORNELL
J.L. & PUB. POL’Y 223, 233 (1999); Maher, supra note 5, at 684–86.

14Peter G. Neumann, Robust Open-Source Software, 41 COMMUNICATIONS OF THE ACM
No. 2, at 128, 128 (Feb. 1998).

15McGowan, supra note 4, at 242–43.

570 UTAH LAW REVIEW [2004: 563

the open-source approach with entitlements that the civil law tradition of
European-based legal systems traditionally provide to authors and artists.
Doing so illuminates legal and policy rationales that suggest three claims for
which I argue. My third claim is the most provocative among the three: that the
legacy of the civil law right of integrity, which allows the author to preserve
the state of her work against certain incursions, suggests that open-source
software would benefit from a statutorily enacted right of “Collaborative
Integrity” to preserve the open-source, royalty-free, state of the software, i.e.,
to preserve the software’s facility for collaboration.

European legal systems endow authors and artists with the right to control
aspects of their work even after they have sold the work.16 For example, a
sculptor in France may sell a statue, but retains a “right of integrity” in the
statue to object to certain distortions, mutilations, or other modifications.17 If
the buyer mutilated the statue by painting it purple, the sculptor may have legal
recourse to remedy the mutilation.18 In essence, the European right of integrity
allows the sculptor to govern, in certain respects, the view that the work
presents. Throughout this Article, I use both European and international
examples of the civil law’s traditional right of integrity because the modern
manifestation of these rights, both outside of Europe and in international
treaties, trace their development to eighteenth century Europe.19

Developers of open-source software distribute source code with the
software under a generally applicable license. The license provides conditional
permission to use copyright protected material. In the set of conditions I call
the open-source approach, the license would require, as a condition of use, that
recipients redistributing the software also redistribute the source code. More
importantly, if the recipients modify the source code, they must make the
modifications available to others if they redistribute the software. Finally,
recipients who redistribute (with or without modifications) must impose the

16JEREMY J. PHILLIPS ET AL., WHALE ON COPYRIGHT 15–16 (5th ed. 1997).
17Thomas F. Cotter, Pragmatism, Economics, and the Droit Moral, 76 N.C. L. REV. 1, 5

(1997); Henry Hansmann & Marina Santilli, Authors’ and Artists’ Moral Rights: A Comparative
Legal and Economic Analysis, 26 J. LEGAL STUD. 95, 99–100 (1997); Susan P. Liemer,
Understanding Artists’ Moral Rights: A Primer, 7 B.U. PUB. INT. L.J. 41, 41–42, 50–51 (1998);
Neil Netanel, Alienability Restrictions and the Enhancement of Author Autonomy in United
States and Continental Copyright Law, 12 CARDOZO ARTS & ENT. L.J. 1, 24 (1994).

18Neil Netanel, Copyright Alienability Restrictions and the Enhancement of Author
Autonomy: A Normative Evaluation, 24 RUTGERS L.J. 347, 387–88 (1993).

19Beyond my choice to focus on the civil law tradition of moral rights, and specifically the
rights of attribution and integrity, is a more general question: why compare open-source software
licensing to such rights, rather than compare it to other regimes that might have collaborative
influences? My reasons are pragmatic. Noticing the parallels between the right of integrity and
open-source software licensing prompted my interest in the analysis. While I do not argue in this
Article that my proposed right of Collaborative Integrity is an optimal system of protection,
explaining these parallels is instructive. My thanks to Mike Madison for suggesting that I clarify
this aspect of my comparison.

No. 2] OPEN-SOURCE SOFTWARE 571

same terms on their licensees. In essence, under this approach, open-source
programmers govern how the “work” (the software) will be viewed by future
users and developers. It must be viewable at least as source code.

There is a parallel impression comparing the civil law right of integrity
with the open-source approach: control over the view that the work presents.
This parallel suggests, in some sense, a “right of integrity” in the open-source
approach. The author’s or sculptor’s interests are protected by the right of
integrity, whereas the open-source programmer’s interests are protected by the
generally applicable license.

This comparison forms the basis for my three claims. First, that the open-
source approach can be better understood in light of the comparative
assessment. Second, that some non-U.S. legal systems may already provide a
degree of latent alternative protection for the open-source approach because
these systems provide moral rights in software to some degree. The hypothesis
is that violation of the open-source licensing permissions can be thought to
violate the programmer-authors’ moral rights in these non-U.S. legal systems.
And, third, that the legal community should evaluate an altered approach to
protecting open-source software. Specifically, I sketch an altered model
suggested by the moral rights entitlement that the European legal systems
provide to authors and artists,20 but modified for the collaborative nature of
software development. I call the alternative model “Collaborative Integrity” for
open-source software.

Collaborative Integrity, which would be best implemented under a
statutory public law mechanism, proposes to blend these notions and extend
them to account for the multiple creators contributing cooperatively to develop
software. I will explore in this Article the legal and policy arguments for and
against such an approach. Open source is a new phenomenon, arising along
with, and at the speed of, the Internet. Our understanding of this phenomenon
is strained to keep pace. Considering it in light of traditional civil law moral
rights granted to authors and artists enhances our understanding of the open-
source movement. This is especially important as the open-source approach
grows internationally. Copyright and licensing law, the basis of the open-
source approach, is different in some ways in non-U.S. legal systems,21 and
therefore, the open-source approach may have differing implications in these
systems. In developing my three claims, this Article seeks to help the law

20See PAUL GOLDSTEIN, INTERNATIONAL COPYRIGHT: PRINCIPLES, LAW AND PRACTICE viii–
ix, 8–10 (2001) (using French and German law as primary examples, describing European
authors’ rights tradition and how it differs between French and German law, and arguing that
natural rights philosophy thought to underlie authors’ rights and separate it from economic and
incentive-based theories of copyright is less acute in formation of those rights than commonly
espoused).

2115 JOSEF DREXL, WHAT IS PROTECTED IN A COMPUTER PROGRAM? COPYRIGHT
PROTECTION IN THE UNITED STATES AND EUROPE 2–3 (Friedrich-Karl Beier & Gerhard Schricker
eds., 1994).

572 UTAH LAW REVIEW [2004: 563

respond to the open-source movement by contributing to the expanding
scholarship about its implications, effects, and promises.

Part II of this Article begins by discussing the significance of source code.
Software takes different forms at different stages in the development process.
Source code is the most important collaborative form. Thus, I review its
relationship to object code within a framework describing the computing
process. In open-source software projects, the collaboration occurs by
functionally intermingling, layering, and linking source code texts. Often, but
not always, multiple programmers contribute to each text, sometimes
concurrently, but also sequentially. Important to this process is the legal
protection that attaches to source code, which Part II summarizes. Open and
available source code is a predicate for collaboration, and open-source
software uses intellectual property protection in a unique way to enable the
collaboration.22

Part III reviews open-source software. The open-source movement began
as an ideology cleverly implemented through copyright to make the source
code for software available and viewable.23 This, along with other evolving
forces in computing, fostered software development under the open-source
model.24 Products grew out of these development projects. As the products
attracted users, especially within the burgeoning Internet infrastructure, the
open-source approach took on a life of its own, attracting investment,
entrepreneurs, and ultimately support from many of the largest computing
companies in existence. Along the way, legal, business, computer science, and
economic commentators began to pay attention, resulting in an increasing
scholarship devoted to the open-source movement.

22In very broad and brief terms, the premise is that software development is a creative

activity that benefits from lessening the effective protection of the works, or preserving a realm
of use for others, rather than successively endowing the work with control-enabling rights. See
Julie E. Cohen, Lochner in Cyberspace: The New Economic Orthodoxy of “Rights
Management”, 97 MICH. L. REV. 462, 466, 530 n.258 (1998) (arguing that due to “the special
nature of creative and informational works and of creative and intellectual progress, there is
substantial reason to believe that a limited-ownership regime is better suited to furthering these
goals,” and noting that the open-source operating-system Linux, as well as the GNU operating-
system project, are examples of this effect).

23McGowan, supra note 4, at 253–56; see also ROBERT BOND, E-LICENSES AND SOFTWARE
CONTRACTS: LAW, PRACTICE AND PRECEDENTS 24–25 (2000) (describing two significant open-
source activist organizations and their techniques to implement or define open-source approach,
including the requirement that source code be made available with software).

24See Yutaka Yamauchi et al., Collaboration with Lean Media: How Open-Source
Software Succeeds, 2000 ACM CONF. ON COMPUTER SUPPORTED COOPERATIVE WORK 329, 329
(describing that although software development has traditionally been “a coordination-intensive
process,” recent interest and advances in computer supported cooperative work facilitated
geographically distributed nature of much open-source software development).

No. 2] OPEN-SOURCE SOFTWARE 573

Following the open-source software discussion, Part IV outlines the
traditional civil law droit moral, or moral right,25 focusing on the rights of
attribution and integrity. Traditionally, authors’ rights in the civil law tradition
include (1) the right to publish the work; (2) the right to have the author’s
name, and no other name, attributed to the work; (3) the right to object to
impaired integrity of the work, that is, mutilations, modifications, or distortions
of the work detrimental to the author’s or artist’s honor or reputation; and,
most obscurely, (4) the right to withdraw the work in certain situations on
equitable terms.26 Among these, the right of attribution and the right of
integrity are most relevant.27 They give authors control over aspects of their
work in ways analogous to open-source software’s governance of source code.
My thesis, in part, is to compare and contrast the control offered by moral
rights with open-source software control, arguing that a better understanding of
the open-source approach will result. Artists’ and authors’ moral rights vary by
jurisdiction, thus I resort to the Berne Convention’s provisions when a

25The phrase ‘moral right’ is a translation of the French phrase droit moral, and as such

there is the possibility of lost nuance in meaning. However, most English-language
commentators use the phrase “moral rights,” and I follow that practice. Roberta Rosenthal
Kwall, Copyright and the Moral Right: Is An American Marriage Possible?, 38 VAND. L. REV.
1, 3 n.6 (1985).

26Dane S. Ciolino, Moral Rights and Real Obligations: A Property-Law Framework for
the Protection of Authors’ Moral Rights, 69 TUL. L. REV. 935, 937 (1995); Hansmann & Santilli,
supra note 17, at 95–96; James M. Treece, American Law Analogues of the Author’s Moral
Right, 16 AM. J. COMP. L. 487, 487, 494, 499–500 (1968–69).

27André Françon, Protection of Artists’ Moral Rights and the Internet, 5 PERSPECTIVES ON
INTELLECTUAL PROPERTY: THE INTERNET AND AUTHORS’ RIGHTS 73, 76 (Frederic Pollaud-Dulian
ed., 1999) (arguing that rights of attribution and integrity are most applicable to works
disseminated over the Internet).

574 UTAH LAW REVIEW [2004: 563

common expression of these rights is necessary.28 The scholarship and
commentary on author’s rights is voluminous, and in this Article I do not
chronicle its breadth or scope. Rather, I sample from the literature to set the
stage for Part V.

Part V compares and contrasts the rights of attribution and integrity with
open-source software. Specifically, the approach aligns these rights with the
most common provisions of typical open-source licenses, demonstrating how
each in their own way confers a degree of control over the respective works.
Authors’ moral rights are granted directly by statute. The right of integrity
provides the author or artist some control over the view a work presents—it
cannot have its integrity impaired such that those viewing the work see a
mutilation, distortion, or modification. The open-source approach, to similar
effect, by conditionally permitting use of a copyrighted work, enables the
original and subsequent programmers to ensure that the source code is
viewable. Any users, licensees, or redistributors of the open-source code risk a
copyright infringement action if they do not follow the conditions permitting
the open-source use.

Inspired by the civil law tradition granting authors’ and artists’ a right to
integrity in their works,29 Part V posits an altered framework for the open-
source software approach. With the right of integrity, authors and artists can

28Berne Convention for the Protection of Literary and Artistic Works, Sept. 9, 1979, S.

TREATY DOC. NO. 99-27, at art. 6bis (1986), Hein’s No. KAV 2245, at 41, available at
http://www.wipo.int/clea/docs/en/wo/wo001en.htm (last visited Feb. 6, 2004) [hereinafter Berne
Convention]. The Berne Convention has grown in importance for international copyright as a
result of the establishment of the World Trade Organization (“WTO”) and its annex treaty,
Trade-Related Aspects of Intellectual Property Rights (“TRIPS”), because TRIPS implemented a
substantive minimum set of copyright requirements for countries that join the WTO. See Neil W.
Netanel, The Next Round: The Impact of the WIPO Copyright Treaty on TRIPS Dispute
Settlement, 37 VA. J. INT’L L. 441, 451 (1997) (“TRIPS effectively incorporates by reference all
of the Berne Convention’s substantive provisions, except as those provisions may concern the
moral rights of attribution or integrity conferred under article 6bis of Berne.”); J.H. Reichman,
Compliance with the TRIPS Agreement: Introduction to a Scholarly Debate, 29 VAND. J.
TRANSNAT’L L. 363, 366–67, 382 (1996) (noting that TRIPS establishes minimum standards for
many areas of intellectual property, including copyright). TRIPS, however, did not require WTO
signatory countries to provide the moral rights of attribution or integrity in local law. Agreement
on Trade-Related Aspects of Intellectual Property Rights, Apr. 15, 1994, Marrakesh Agreement
Establishing the World Trade Organization, Annex 1C, at art. 9, LEGAL INSTRUMENTS—RESULTS
OF THE URUGUAY ROUND vol. 31, 33 I.L.M. 81 (1994), reprinted in THE RESULTS OF THE
URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS: THE LEGAL TEXTS 6–19, 365–403
(GATT Secretariat ed. 1994), available at http://www.wto.org/english/docs_e/legal_e/27-
trips_01_e.htm (last visited Feb. 6, 2004); see also Netanel, supra, at 451. Berne’s expression of
moral rights is minimalist, it specifies only two of the traditional moral rights. Adolf Dietz, The
Moral Right of the Author: Moral Rights and the Civil Law Countries, 19 COLUM.-VLA J.L. &
ARTS 199, 203 (1995).

29See Calvin D. Peeler, From the Providence of Kings to Copyrighted Things (and French
Moral Rights), 9 IND. INT’L & COMP. L. REV. 423, 438–39, 448–49 (1999) (describing the right
of integrity’s early development in France).

No. 2] OPEN-SOURCE SOFTWARE 575

control their works by objecting to certain modifications. This is a prohibition
on certain types of modifications. In another sense, however, this control
preserves essential characteristics of the work. Open-source programmers
similarly seek to preserve essential characteristics of their software.30 They
control their code, by making it viewable, to preserve the collaborative
opportunity, and sometimes collaborative necessity, for others to leverage their
work.

Collaborative necessity stems from the functional nature of software.
Functional collaboration with components that must interoperate distinguishes
most software development from most authorship and artistic endeavor.31 This
collaboration is an essential characteristic of much software, whether
developed under the open-source model or the traditional software
development model.32 Collaboration is an overt goal of the open-source
approach because it emphasizes viewable source code. As such, recognizing
that the functional nature of software and, in particular, the collaborative nature
of open-source software, means that imposing the opportunity to modify open-
source code serves parallel interests, as the right of integrity serves for literary
and artistic works.

30At first blush, my comparison may seem to indicate more difference than similarity. The

right of integrity specifically indicates that the author or artist can object to modifications. This
implies a degree of control over modifications. On the other hand, the open-source approach
demands that the opportunity for modification be preserved by ensuring source code access. My
argument is, however, that the approaches are similar for the most important aspects of each type
of work.

31There are counterexamples to this assertion, such as a movie, which is a team project
with collaboration to some degree, but the traditional art and literary works are mostly stand-
alone products. BROOKS, supra note 3, at 255–56. This is particularly true under copyright’s
traditional conceptions of authorship. See Peter Jaszi, Toward a Theory of Copyright: The
Metamorphoses of “Authorship,” 1991 DUKE L.J. 455, 472 (“The ‘authorship’ concept, with its
roots in notions of individual self-proprietorship, provided the rationale for thinking of literary
productions as personal property with various associated attributes including alienability.”);
Jessica Litman, The Public Domain, 39 EMORY L.J. 965, 967 (1990) (noting establishment view
that “copyright’s paradigm of authorship credits the author with bringing something wholly new
into the world [and challenging this paradigm because] it sometimes fails to account for the raw
material that all authors use”).

32Traditional software development employs classic group organizational methods where
managers subdivide work and delegate tasks to a hierarchy of employees to implement.
See BROOKS, supra note 3, at 32–33 (analogizing programming team to surgical team); see also
infra Part III.A.1.(a).

576 UTAH LAW REVIEW [2004: 563

The parallel nature of these interests is demonstrated in several contexts.
First, both systems call forth personality theories for rights in intangibles.33
Authors and artists invest their personality in their works. Open-source
programmers share this characteristic. Many programmers develop or
contribute to open-source projects as a hobby or pastime, or for ideological
reasons separate and apart from their gainful employment. Thus, many open-
source programmers make a personal investment in the code. Second, in the
civil law system, moral rights exist to some degree separate and apart from the
economic “copyright” rights in the work.34 The open-source approach has
accomplished something similar by using the license to impose additional
conditions beyond copyright protection. The separateness is less acute because
the license depends on the underlying copyright protection. The open-source
license, however, has unique goals compared to copyright and implies a
separate ideology. Demonstrating this is the moniker “copyleft”—a play on
words meant to express that the open-source goal, making the work mostly
available, is opposite an ex-post or pejorative view of copyright’s function:
generally protecting and prohibiting use of the work by others, while perhaps
licensing some narrow use.35 Third, both systems have organizational and
institutional designs and effects influenced by the rights granted to the authors
and artists, and programmers, respectively. Authors’ and artists’ moral rights
may affect their interactions with other groups, such as publishers or

33See Cotter, supra note 17, at 7–8 (reviewing philosophical antecedents of European civil

law moral rights and noting that it sprang from personality theory notion that “the thing
possessed comes to embody the owner’s personality,” and also discussing contrast between
personality theory as basis for rights with instrumentalist theory of providing rights to create
incentives for certain outcomes); Margaret Jane Radin, Property and Personhood, 34 STAN. L.
REV. 957, 1013 n.202 (1982) (noting that moral rights are manifestation of property rights rooted
in theories of personality, and that moral rights go “beyond copyright, which protects only
against economic exploitation of one’s work by others, to give the artist the right to prevent
owners of her work from altering or destroying it”); but see GOLDSTEIN, supra note 20, at 8–10
(arguing that philosophy thought to underlie authors’ rights and separate it from economic and
incentive-based theories of copyright is less acute in formation of those rights than commonly
espoused).

34Hansmann & Santilli, supra note 17, at 95.
35DONALD K. ROSENBERG, OPEN SOURCE: THE UNAUTHORIZED WHITE PAPERS 90–91

(2000); Heffan, supra note 5, at 1491. Under an ex-ante or more favorable view of copyright’s
goal, to create economic incentives for creation and dissemination of works, copyright shares
similarities to copylefting or open sourcing works: both seek wide dissemination. The
difference, of course, is the mechanism of dissemination. Copyright relies on commoditization
and the pricing mechanism to obtain dissemination, while open-source software relies on
self-organizing critical mass for developers and users.

No. 2] OPEN-SOURCE SOFTWARE 577

distributors.36 Open-source programmers, operating under an obligation to
make source code available upon redistribution, have less need for formal
organizational structures.37 Their collaboration, while necessarily coordinated
to a certain extent, can be, and often is, loose to a degree heretofore
unprecedented in software development.

Although originally developed as judicial doctrines, moral rights in the
civil law systems have served the interests of authors and artists in later years
as statutory protections.38 To the extent these interests parallel those of open-
source programmers and the open-source movement in general, statutory
protection suggests itself for some aspects of the open-source approach. In
response to this suggestion, I argue for such protection under a right of
Collaborative Integrity as my third claim in this Article. The various open-
source licenses permit use under a number of differing conditions. Those
conditions that express the collaborative essence of the open-source approach
could be beneficially infused with statutory authority. Doing so should further
heighten the incentives for the creation of and contribution to open-source
software. It could facilitate evolving forms of open-source project organization
and management. Alternatively, it could supplement the enforcement power of
open-source licenses that seek to attach additional conditions on open-source
use. At a policy level, it would express an approval of the volunteerism
inherent in the open-source movement. Thus, in Part V, I elucidate the
collaborative essence of the open-source approach, which I label the
Collaborative Integrity of open-source software.

Part VI then concludes by emphasizing the implications of Collaborative
Integrity. It recounts the dramatic progression of open-source software from an
ideology, to an Internet-niche technology, to a major competitive force in the
most important of software arenas: computer operating systems and the
Internet. It stresses the parallels between the open-source approach and
authors’ and artists’ rights to attribution and integrity. These parallels will help
us better understand the open-source approach, suggest alternative grounds to
enforce it in jurisdictions where moral rights apply to software, and imply a
need to evaluate alternative mechanisms to enable and support the open-source
approach. Recognizing the Collaborative Integrity of open-source software

36See Jane C. Ginsburg, A Tale of Two Copyrights: Literary Property in Revolutionary

France and America, 64 TUL. L. REV. 991, 1011–13 (1990) (suggesting that traditional accounts
of initial establishment of authors’ and artists’ moral rights in eighteenth-century France
overstate degree to which concerns for authors and artists animated discussion because
“generally the most vociferous advocates for authors’ rights were not authors, but their
publishers, . . . [a]rguments for copyright therefore evoked images of guild self-interest in a
period of increasing anticorporatism” (citation omitted)).

37Benkler, supra note 4, at 377–78, 413, 435–36.
38Cotter, supra note 17, at 5.

578 UTAH LAW REVIEW [2004: 563

provides the opportunity to give it, and the unique approach upon which it is
based, greater effect and efficacy.

II. THE SIGNIFICANCE OF SOURCE CODE

Open-source software has a recent history spanning about the last decade
and a half. Its rise correlates to the rise of the Internet. Its history springs from
rebellion against certain traditional software development practices. As a
result, understanding its origins requires some understanding of what came
before it, what competes with it today, and why its holy grail is source code
availability.

The next Section explains, partly by metaphor, software development
basics and the importance of source code to the computing process. This
enables my later discussion of traditional software development contrasted
with open-source software.

A. Software and Source Code

When developing software, one arranges a composite of instructions, data,

and interfaces in a sequence and hierarchy that will produce a particular
desired computing outcome.39 This instructional composite bears the label
“software,” or “computer program.” The U.S. copyright statute’s definition
reflects software’s nature: “A ‘computer program’ is a set of statements or
instructions to be used directly or indirectly in a computer in order to bring
about a certain result.”40 The definition reflects three important concepts,
elaborated below.

1. The Three Elements of Computing: Instructional Composites, Operating
Systems, and Computing Results

Three concepts inhere in the functional nature of a computer program.

I label these concepts the three elements of computing. Each element is present

39HAROLD ABELSON ET AL., STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS

xii–xiii, 1, 4–5, 79–80, 217–18 (2d ed. 1996) [hereinafter ABELSON ET AL.,
COMPUTER PROGRAMS] (“Computational processes are abstract beings that inhabit computers.
As they evolve, processes manipulate other abstract things called data. The evolution of a
process is directed by a pattern of rules called a program. People create programs to direct
processes.”); ANTHONY LAWRENCE CLAPES, SOFTWARS: THE LEGAL BATTLES FOR CONTROL OF
THE GLOBAL SOFTWARE INDUSTRY 12–16 (1993) [hereinafter CLAPES, SOFTWARS].

4017 U.S.C. § 101 (2000).

No. 2] OPEN-SOURCE SOFTWARE 579

in the copyright statute’s definition of a computer program.41 First, the
statements or instructions, which are a hierarchical composite of interacting
commands, procedures, structures, data, variables, and interfaces. A
programmer composes the composite to make the program. Second, the
computer, or more properly, the computer’s operating system. The operating
system is the means or the agent by which the instructions are carried out.
Third, the certain result, that is, the desired computing output.42

The instructional composite is the lynchpin of all three computing
elements. It defines what the computer will do. It is a necessary, but not
sufficient, predicate to a successful computing result. It is what many people
are referring to, in part, when they use the term “source code.”43 The
instructional composite, however, takes different forms at different stages in
the software development process. These variations in form produce the crux
of one problem at which open-source software is aimed: a nonhuman readable
form of the instructional composite, often called the “object code,” is the only
instructional composite available with most traditional software.44 To the
progenitors of the open-source movement, this reduced the value of the
software and offended values important to that community of technologists.
They preferred that software also deliver the human-readable form of the

41See also William F. Patry, Copyright and Computer Programs: It’s All in the Definition,

14 CARDOZO ARTS & ENT. L.J. 1, 17–18, 22–24, 30–32 (1996) (discussing definition of
computer program, and history of definition, in arguing, among other points, that copyright
protection for computer programs should pay greater attention to definition in section 101).

42To give an example touching on all three elements of computing, consider the
spell-checking component of a word-processing software package. We can conceive of the
sequence and process that the spell-checking program undertakes. It models how we would
check the spelling in a document ourselves. We would read through the document, scanning for
words that were misspelled. The scanning step requires further elaboration. Each time we read a
word, we compare it to the list of words we have stored in our memory. If the word is not
recognized, we try to correct it by comparative contextual estimation. That is, we find known
words similar to the unknown word and determine whether they fit the context. The
spell-checking program operates similarly.

My thumbnail description of how we would spell check is the starting point for writing
one possible instructional composite directing a computer program that checks spelling. The
second element for this example is the computer’s operating system, which must be able to read
or interpret the spell-checking instructional composite (or some transformed version of it) and
perform the third element, actually checking the spelling in a document.

43See Bobko, supra note 5, at 73 (noting, in discussion of nonliteral copyright infringement
for structure, sequence, and organization of software, importance of items such as data structures
defined by source code).

44With today’s computing technology, the object code form of the instructional composite
is stored in computing media, whether it is a disk drive or memory, encoded as ones and zeros.
While the object code is typically thought to be nonreadable by humans, some extremely gifted
humans can read the object code form directly. LAWRENCE LESSIG, CODE AND OTHER LAWS OF
CYBERSPACE 103 (1999) (noting that only geniuses and computers can read object code).

580 UTAH LAW REVIEW [2004: 563

instructional composite.45 This form is the computer program as implemented
in a specific computer programming language. Other programmers cannot
readily modify or learn from software that lacks its human-readable
instructional composite. In other words, without the source code, collaborative
possibility is diminished.

To illustrate, I next develop an analogy comparing the instructional
composite’s variations in form with translating human languages, such as
translating from German to Japanese. This analogy highlights the importance
of making the source code available with the software. To emphasize this
importance, I develop the analogy in the Subsection below using a metaphor
that compares the computing process to the cooking process.

2. The “Software as Recipe” Metaphor for the Three Elements

Computing’s three elements are the instructional composite, the operating

system, and the computing result. Cooking has three analogous elements: the
recipe, the cook, and the dish.

Assume that Gerhard is a person who speaks and writes only German. He
creates a wonderful recipe for Bavarian-style coriander chicken. Gerhard wants
his cousin Francis, who lives in Japan, to experience Bavarian-style coriander
chicken. Francis, however, does not cook, although his kitchen is fully
equipped to make the recipe. Francis employs a cook who reads, writes, and
speaks only Japanese. The cook is fully skilled and capable to make
Bavarian-style coriander chicken if the recipe is presented to the cook written
in Japanese. The obvious solution is to translate the recipe from German into
Japanese.

In this analogy, the German recipe is like the source code of a computer
program. Alternatively put, the German recipe is the German-readable form of
the instructional composite for making Bavarian-style coriander chicken. The
cook and kitchen combination is like the operating system and computer
combination. The cook uses the “hardware” of the kitchen to implement the
recipe for the desired dish. The operating system directs the computer
hardware to produce the computing result.46 The translated Japanese version of
the recipe is like the object code that a computer directly executes.
Alternatively put, the Japanese version is the computer-readable form of the
instructional composite.

Computer programs are written in languages analogous to German (or
English, French, etc.), with vocabulary, acceptable syntax, grammar, and many
other features characteristic of traditional human languages. Computer

45Richard Stallman, The GNU Operating System and the Free Software Movement, in

OPENSOURCES, supra note 2, at 53, 53–55.
46RANDAL E. BRYANT & DAVID R. O’HALLARON, COMPUTER SYSTEMS: A PROGRAMMER’S

PERSPECTIVE 13–14 (2003).

No. 2] OPEN-SOURCE SOFTWARE 581

program languages go by sometimes-funny names, such as “C” or “C++” or
“FORTRAN” or “Pascal” or “Java.” The allowed statements and syntax for
these languages use, mostly, English words. As a result, a non-programmer
who reviewed source code in the “C” programming language would recognize
some words, such as “main” or “for” or “return.” These words, as they appear
in a “C” program, have meanings different from their use in written or spoken
English. To one who knows the “C” programming language, however, they
have precise meanings related to directing the operating system to direct the
hardware to undertake specific operations in particular ways.47 In similar
fashion, Gerhard’s recipe instructs one who can read German what operations
to perform to make Bavarian-style coriander chicken.

Like Gerhard and Francis’ language mismatch, software development
technology has a language mismatch. As with the cook who can only read
Japanese, computers directly read and execute “object code” instructions. The
program written in the “C” programming language must be translated into
“object code” that the computer can read and execute.48 Alternatively put, the
instructional composite expressed in “C” must be translated into an
instructional composite that the computer can directly read and execute.

Unlike the human language difference, which is a historical and cultural
artifact, the difference in computing instructional composites is from conscious
design. The “object code” that the computer can directly read and execute is
too awkward and unwieldy for human computer programmers to productively
read and write. This is due to at least two causes. First, the “object code” is
typically encoded as a series of “operational codes” that correspond to the
basic operations that the computer can perform, typically in the range of a few
hundred.49 Although all information in current computers is stored as ones and
zeros, much of it is encoded such that when one views the information through
standard viewers (which are themselves software programs), human-readable
characters result.50 This is not the case with “object code”—it is only encoded
to be intelligible by the computer’s hardware. Specifically, the “object code”

47ABELSON ET AL., COMPUTER PROGRAMS, supra note 39, at xvii–xviii (“[P]rograms must

be written for people to read, and incidentally for machines to execute.”).
48BRYANT & O’HALLARON, supra note 46, at 4–5; Rachiver, supra note 5, at *6–*8.
49BRYANT & O’HALLARON, supra note 46, at 263–65.
50The encoding scheme used to store and retrieve/decode the information depends on a

variety of factors, including the type of data stored and the age of the computing technology at
issue. For example, a still-pervasive but relatively old encoding scheme is the American
Standard Code for Information Interchange, or “ASCII” code. In the ASCII code, unique 8-bit
binary numbers are assigned to the English alphabet and other common characters one finds on a
computer keyboard. MICHAEL D. SCOTT, INTERNET AND TECHNOLOGY LAW DESK REFERENCE 42
(2003) [hereinafter SCOTT, I&T LAW REF.]; ASCII Table, ASCII Table and Description, at
http://www.asciitable.com (last visited Feb. 7, 2004). The original ASCII code had 128 such
associations. For example, the binary code for “A” is 01000001, but the code for “a” is
01100001. The same series of 8 ones or zeros, however, could be interrupted under a different
encoding scheme to mean something completely different.

582 UTAH LAW REVIEW [2004: 563

expresses the instructional composite in terms of operations or instructions that
the computer’s hardware can perform.51 Returning to the cooking analogy, the
Japanese recipe is the “object code.” If the Japanese recipe says “set
temperature to 177 degrees Celsius,” the cook (i.e., the operating system) reads
the instruction and commands the kitchen hardware (i.e., the computer) to
carry out this instruction using its hardware, specifically, the thermostat on the
oven.

The second reason that “object code” is unproductive and unwieldy for
writing programs is that the available operations in most computer hardware
are too limited and basic. They are too “low-level.” Writing programs using
these operations to perform standard data-processing operations, such as
sorting data, or running the same routine on different data again and again, is
cumbersome and costly.52 That is why programming languages such as “C”
and “Pascal” are called high-level programming languages—they allow
economy of expression by hiding the details for common operations.53

Specifying these additional details takes time and makes the programming
work less interesting, thus programmers prefer to program in high-level source
code. Hiding the details is work that can be automated—meaning that a
computer program can assist with the software development process. The
ultimate end goal is to create executable object code. A special computer
program, called a compiler, helps the code get from high-level human-readable
source code to object code. This computer program has a special role in
developing software. It translates, just like the translator who helped Gerhard
provide the Bavarian-style coriander chicken recipe to Francis.

3. Source Code: The Link Between the First and Second Element

Programmers are much more productive working in source code

compared to object code. It is better if they can perform basic operations using
language statements like “bake for twenty minutes at 170 degrees Celsius,”
rather than specifying all the step-by-step operational details. As a result,
software development technology emphasizes high-level instructional

51BRYANT & O’HALLARON, supra note 46, at 124 (noting that “in a high-level language

such as C,” programmer need not “specify exactly how the program manages memory and the
low-level instructions the program uses to carry out the computation”).

52See BROOKS, supra note 3, at 186.
53To illustrate, consider the cooking analogy, where the high-level language statement is

“bake the chicken for twenty minutes at 177 degrees Celsius.” The low-level operations would
typically be much more voluminous. They might say: (1) unlatch the oven door, (2) open the
oven door, (3) check that the oven is empty, (4) insert the chicken, (5) close the oven door,
(6) latch the oven door, (7) set the timer to go off in 1200 seconds, (8) set the heat to 177 degrees
Celsius, (9) start the oven, (10) wait for the timer, (11) when the timer goes off, turn off the
oven, (12) reset the heat to 0 degrees Celsius, (13) unlatch the door, (14) open the door, and
(15) remove the chicken.

No. 2] OPEN-SOURCE SOFTWARE 583

composites where the language statements and structures can do more work.
To support this approach, the technology turned to automated translators,
called compilers. Compilers generate low-level object code from the high-level
source code.54 They change the form of the instructional composite in much
the same way that the human translator converts Gerhard’s Bavarian-style
coriander chicken recipe from German to Japanese.

The copyright statute’s definition of “computer program” implicitly
recognizes the compilation step that changes the instructional composite from
source code to object code. It says that a “‘computer program’ is a set of
statements or instructions to be used directly or indirectly in a computer in
order to bring about a certain result.” One way to read this definition is that the
“direct” instructions are object code, but the “indirect” instructions are source
code.55

The source code is the work studio of the programmer. It must be so; the
object code is too unwieldy. The source code is the environment in which the
programmer solves computing problems and codifies the solutions. This
environment is aware of all three elements of computing. The desired
computing result anchors the coding process. The target operating system and
hardware influence the process as well. Just as a blueprint shows how a house
is built, or a recipe for coriander chicken illustrates how one makes the
delectable dish, a computer program’s source code conveys much information
to other programmers. It shows the solution the programmer implemented for
the computing task at hand. It may show the programmer’s technological
elegance, personal wit, determination, charm, genius, or pedestrian skills.

The source code includes more than just statements that command the
operating system to do something. It typically contains comments, taken in the
ordinary sense of the word. Through comments, programmers insert
information into the computer program that does not become part of the object
code.56 Even though not used in the object code, comments can play an

54BRYANT & O’HALLARON, supra note 46, at 4–6.
551 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT, § 2.04[C] (2003)

(“A computer program by definition is ‘a set of statements or instructions to be used directly or
indirectly in a computer.’ A source code program is used ‘indirectly,’ and an object code
program is used ‘directly.’” (quoting 17 U.S.C. § 101 (2000))).

56The compiler (a special computer program) filters out comments when it transforms the
source code instructional composite into the object code expression of that composite.

584 UTAH LAW REVIEW [2004: 563

important role in making the source code valuable.57 One can often glean the
history associated with developing a computer program from the comments,
including approaches tried and abandoned, particularly troubling problems
encountered and solved, and perhaps a record of who programmed particular
sections of the source code. Sometimes even legal notices, such as a copyright
or licensing notice, are placed in source code comments. In sum, comments
record the program’s history and thus can facilitate collaboration and reuse of
the code.

Ultimately, the development process requires that product from the source
code work studio be transformed into object code by the compiler so that the
operating system can read and execute it using the computer’s hardware.58 The
compiler is itself a computer program with the special task of translating the
source code to object code. The compiler unifies the three elements of
computing by taking the “indirect” instructions of the source code instructional
composite and preparing an object code instructional composite for the
operating system.59 The German recipe is translated into Japanese, and the
cook and kitchen carry out the recipe, just as the operating system and
computer hardware carry out the program.

57Some programmers document the operation of the code through comments. These efforts

are sometimes extensive, and sometimes minimal. The need for comments to explain the code
may depend on the complexity of the problem being solved and the programmer’s skills. Some
programmers prefer to not rely on comments to document the source code. Their theory is that
other techniques do the job better, such as choosing well-named variables in source code.
ABELSON ET AL., COMPUTER PROGRAMS, supra note 39, at 124 n.21; see also BROOKS, supra
note 3, at 172–74. Programming languages allow the programmer to choose names for units or
sets of information. These names are called variable names. They may be as simple as
“AutoPrice” to hold a single price for a single car; or complex as in “AutoPrices[25][35]” to
hold a matrix or table of prices for up to twenty-five cars in thirty-five separate countries; or
even much more complex and intricate. A general axiom is that a sprinkling of comments can
help the readability and understandability of a well-designed and well-written program,
particularly at junctures in the logic. But, continuing the axiom, commenting, no matter how
extensive, is unlikely to make a poorly designed program with unnecessarily complex structure
and hard to understand variable names readily understandable.

58See McRoberts Software, Inc. v. Media 100, Inc., 329 F.3d 557, 562 (7th Cir. 2003)
(discussing defendant’s translation of video-editing character-generation software which ran
only on Macintosh computer and operating system to source code instructional composite that
would compile and run on Windows-based computers, which process plaintiff described as “akin
to translating English to Chinese”).

59As one might expect, the analogy of program compilation to human language translation
is a poor fit in a variety of minute technical aspects. For my purposes, however, the analogy is a
good fit because it emphasizes the importance of access to the source code. Similarly, my direct
descriptions of the software development process and the compilation step are necessarily quite
broad. They do not reveal the rich variety of technologies and approaches that could fall under
my lay description of the compilation step. Again, however, the purpose is met by emphasizing
that supply of only compiled object code is a poor substitute for the source code if one wants to
achieve maximum learning from the code.

No. 2] OPEN-SOURCE SOFTWARE 585

The figure below depicts the transformation of the source code within the
three computing elements model.

Computing ResultOp. Sys. & HardwareInstructional Composite(s) (“IC”)

Operating System
(which is also a

computer program)

Computing
Hardware

• Spell
check

• Sort
• (etc.)

ICsource code
Compiler
Translator

(also a
computer
program)

ICobject code

Executing
Instructional
Composite

Computing ResultOp. Sys. & HardwareInstructional Composite(s) (“IC”)

Operating System
(which is also a

computer program)

Computing
Hardware

• Spell
check

• Sort
• (etc.)

ICsource code
Compiler
Translator

(also a
computer
program)

ICobject code

Executing
Instructional
Composite

Figure 1

The Three Elements of Computing

In this figure, the shaded, six-sided objects are computer programs

executing “on top of” the operating system. The black arrows indicate the
progressive transformation of the instructional composite.

The foregoing discussion demonstrates the importance of source code and
its role in the software development process. Source code commands the
ultimate result. It is the work studio of the programmer, implementing software
to deliver a result.60 Source code is meaningful in several ways. Programmers
can study the configuration and use of its language statements. They can study
how the source code organizes data, interacts with its own internal
components, or makes use of the operating-system functions available to it.

60ABELSON ET AL., COMPUTER PROGRAMS, supra note 39, at 4. The authors state that:
a powerful programming language is more than just a means for instructing a
computer to perform tasks. The language also serves as a framework within which
we organize our ideas about process. Thus, when we describe a language, we
should pay particular attention to the means that the language provides for
combining simple ideas to form more complex ideas.

Id.

586 UTAH LAW REVIEW [2004: 563

These insights are available through the direct programming language
statements that resemble the operative steps in a recipe (“bake for twenty
minutes at 170 degrees Celsius”), through choices made by the programmer in
naming routines, procedures, and information, or through the comments that
usually are present. The comments may provide hints, narrative, design
reasoning, even sly humor and thoughts for improvements not yet
implemented.

Source code makes the inner workings of a computer program directly
observable. Without the source code, one can sometimes observe the inputs,
behaviors, and outputs and glean a general sense of the program’s operation. It
is sometimes even possible to create a replica of the program using only a
specification of the externally observable inputs, behaviors, and outputs of the
target program.61 But these techniques are rarely as effective as access to the
source code when one wants to leverage the work of another programmer.
Well-documented source code is the gold standard for reusable software.

Source code is at the center of technological importance in software, and
as a result, it also occupies the primary historical focus for software protection.
The next Section expands the source code focus to discuss its legal protection,
reviewing how the traditional modes of software protection apply to software
and source code. This background enables better understanding of the open-
source approach, which does not “protect” in the traditional sense of
intellectual property, but, rather, seeks to protect and preserve the
Collaborative Integrity of software’s source code.

B. Traditional Intellectual Property Protection for

Software and Source Code

The four major types of intellectual property protection apply to software.

Trade secret law can protect secrets embodied in or implemented through
software. Copyright, because its protection attaches upon fixation of original
expression, is the dominant form of software protection.62 Patent protection for
software has grown doctrinally and in practical importance since the mid-to-
late 1990s.63 It represents a current area of policy controversy, both generally
and for open-source software.64

61See BRYANT & O’HALLARON, supra note 46, at 124–25 (discussing reverse engineering).
621 RAYMOND T. NIMMER, THE LAW OF COMPUTER TECHNOLOGY § 1:1, at 1–4 (3d ed.

2003) [hereinafter NIMMER, COMPUTER TECHNOLOGY] (“Since the 1980s, copyright law has been
a major form of protection and property rights for computer programs, databases, software
technology and other digital works.”).

63G. PETER ALBERT, JR., ET AL., INTELLECTUAL PROPERTY LAW IN CYBERSPACE 416–17,
420–21 (1999); McJohn, supra note 5, at 47 (“[T]he law on patentability of computer-related
inventions has itself changed radically—from forbidding to welcoming.”).

64Bessen, supra note 5, at 13.

No. 2] OPEN-SOURCE SOFTWARE 587

Least relevant for this Article is trademark protection, although it
certainly applies to software. In fact, one of the most successful open-source
software projects, the Linux operating system, has high brand recognition for
the trademarked moniker “Linux,” under which various groups develop and
distribute the software.

To catalog the modes of protection bearing on source code, the remainder
of this Section highlights software protection under the traditional areas of
intellectual property, excluding trademark law. Chronologically, trade secret
law, then copyright law, and then patent law became important in relation to
software. The circumstances, however, of each area’s foothold over software
protection are unique. Each area’s rise reflects influences of the times when it
took a prominent place in the panoply of regimes under which rights may
attach to software.

1. Trade Secret Protection

Trade secret law fit early computing technology. The industrial

organization and technological deployment of software before and into the
1970s called for trade secret protection. Computers were not ubiquitous. Large
organizations were the primary users. Software was developed with languages
that were, by today’s standards, rather “low-level.” As a result, those languages
required a highly specialized and skilled artisan to deal with the computer
program. More importantly, software was often distributed under tight
contractual control, often with negotiated agreements. This facilitated trade
secret control. The contracts could extract promises and duties in exchange for
use of the software. Further, users of licensed software often never obtained a
copy of the software. Instead, they used the software remotely. The code might
actually run on a mainframe computer remotely located from the user’s
facility. This further facilitated protecting any trade secrets embodied in the
source code of the software.

As computer technology and software languages evolved, however, other
protection regimes supplemented trade secret law. Increasing standardization
in languages and operating systems heightened the possibility that
programmers could reverse engineer object code, obtaining in the process a
close proxy for the original source code. Thus, the secret status of trade secrets
embodied in software was increasingly in jeopardy of discovery, which would
foil the trade secret protection. This and other drawbacks of trade secret
protection triggered analysis of alternative protection.65 Rights-holders,
however, did not abandon trade secret protection. It is often included in form
license agreements for traditional software. But trade secret protection is

65Nat’l Comm’n on New Technological Uses of Copyrighted Works, CONTU’s Final
Report and Recommendation (1979), reprinted in 5 COPYRIGHT, CONGRESS AND TECHNOLOGY:
THE PUBLIC RECORD 1, 33–36 (Nicholas Henry ed., 1980) [hereinafter CONTU Final Report].

588 UTAH LAW REVIEW [2004: 563

singularly inapplicable to open-source software. The accessible and open-
source code would almost always defeat the trade secret status by disclosing
the secret.

While still applicable to closed, traditional software, trade secret law is no
longer the dominant mode of protection for software. Copyright protection
holds that place.

2. Copyright Protection

Source code’s literary nature became more pronounced as computing

technology advanced. Software programming languages became more
sophisticated and elegant. They began to increasingly resemble human
languages. This suggested copyright protection, including protection of the
source code as a literary work. The U.S. Government studied the problem and
eventually issued an important report that recommended copyright protection
for software.66 In 1980, Congress amended the copyright statute to explicitly
cover computer programs.67 From that time forward, copyright provided
software rights-holders a more certain scope of protection. Although copyright
protection does not prohibit independent creation, the useful life of most
computer programs, as with computing technology generally, is sufficiently
short so as to very rarely, if ever, persist beyond the copyright term.

As with traditional literary works, copyright infringement of the holder’s
reproduction right for source code tends to fall into several categories: literal
and nonliteral copying, and derivative works.68 Literal copying is the primary
copyright basis upon which the open-source approach depends. Also
potentially important, however, are (1) nonliteral copying, and
(2) infringement of the copyright holder’s exclusive right to create derivative
works. In cases of nonliteral copying, that is, allegations that one copied the
structure, sequence, and organization of the source code, copyright protection

66Nicholas Henry, Introduction to 5 COPYRIGHT, CONGRESS AND TECHNOLOGY: THE

PUBLIC RECORD ix (Nicholas Henry ed., 1980) (noting that twenty-one years of public debate led
to Copyright Act of 1976). During the development of the Copyright Act of 1976 Congress
established a National Commission on New Technological Uses of Copyrighted Works
(“CONTU”), “which was active from 1975 through 1978” Id. at xiii. “The report
recommended treating computer programs as a form of literary work, assimilating databases to
compilations under existing copyright principles, and abjuring special treatment of
computer-generated works because no insurmountable problems had become apparent or were
foreseeable.” Arthur R. Miller, Copyright Protection for Computer Programs, Databases, and
Computer-Generated Works: Is Anything New Since CONTU?, 106 HARV. L. REV. 977, 979
(1993) (citation omitted). See also Samuelson, supra note 2, at 670–71 (questioning CONTU’s
recommendation that computer program copyrights extend to machine-readable (object) code
and discussing alternative solutions).

67NIMMER & NIMMER, supra note 55, § 2.04[C].
68NIMMER, COMPUTER TECHNOLOGY, supra note 62, § 1:14, at 1–41 to 1–52 (“[T]he

software author’s protection should be within traditional, limiting concepts in copyright law.”).

No. 2] OPEN-SOURCE SOFTWARE 589

is said to be “thin” because the copying analysis partitions protectable versus
unprotectable elements of the program.69

There are, however, other ways to copy software than merely copying the
source code. The source code is just one form of the instructional composite.
The object code instructional composite is also protected against unauthorized
copying as a computer program. Unauthorized copies of the object code violate
the reproduction right—another instance of literal infringement. Copyright’s
power to protect software increased dramatically under the “RAM copies”
doctrine, under which merely running a computer program was adjudged to be
a violation of the reproduction right, and thus, an instance of literal
infringement if done without permission or statutory authorization.70 The
doctrine greatly increased the number of actionable events that constitute
reproduction of the copyrighted work. The doctrine says that copying digitally
encoded content, such as the object code instructional composite of a computer
program, from permanent storage, such as a hard drive into the memory of a
computer, is a violation of the reproduction right.71 This means that merely
running the computer program is a copyright infringement because running the
program necessarily entails copying the object code into the computer’s
memory so the computer processor can execute the instructional composite. By
increasing copyright’s power to control software, the RAM copies doctrine
also increases the power of the open-source approach to control use of the
software.

69With respect to nonliteral copying, what followed software’s entry into the copyright

regime was a period of uncertainty as the courts struggled to determine the scope of coverage for
source code as a literary work. The essential question was whether and how traditional copyright
doctrines for literary works applied to parse the protectable from the unprotectable elements of
the source code. These doctrines included (1) the idea/expression dichotomy, under which
copyright protects only the expression, not the idea; (2) not extending coverage to public domain
elements; and (3) scenes à faire, a doctrine stating that protection does not extend to stock
characters and common contexts. Eventually, courts worked out realistic formulations of these
doctrines for source code as a literary work. What resulted is the well-known
“abstraction-filtration-comparison” three-step test. Menell, supra note 2, at 82–85.

Through the first two steps, the test filters out certain elements from the source code,
rendering these elements nonprotectable. What remains is then compared to an allegedly
infringing work in the last step. Eliminated are code elements in the public domain, ideas, and
items resulting from functional concerns, such as efficiency, specific code statements required
under the operating system for which the program is written, and similar items. Id. The test
recognizes that software, and source code, is more complex than the sequential series of
statements in a typical recipe. It implicitly recognizes that what instead exists is an instructional
composite, with its result-producing sequence and hierarchy of commands, routines, data, and
interfaces.

70See 17 U.S.C. § 117(a) (2000) (authorizing owners of copies of computer programs to
make certain types of additional copies for limited purposes).

71MAI Sys. Corp. v. Peak Computer, Inc., 991 F.2d 511, 519 (9th Cir. 1993); see also
Joseph P. Liu, Owning Digital Copies: Copyright Law and the Incidents of Copy Ownership, 42
WM. & MARY L. REV. 1245, 1258–63 (2001) (discussing implications of RAM copies doctrine).

590 UTAH LAW REVIEW [2004: 563

Thus, copyright offers a panoply of rights relevant to the open-source
approach. The first is literal copying of the source code instructional
composite. The second is creating RAM copies of the instructional composite,
in both the source code and object code forms. Open-source users technically
violate both of these rights merely by obtaining and running a copy of open-
source software, at least for the expressive, copyright protected elements of the
software. The violation is only technical because the open-source license
grants a permission immunizing the violation as long as one follows the license
conditions. The third is nonliteral copying of the source code, that is, copying
the structure, sequence, and organization of the source code. The fourth is
creating derivative works from the source code. Open-source developers who
obtain open-source software and modify it may technically violate the third
and fourth right. The fact of a technical violation in these rights is much less
certain than the first two rights. This is because the doctrines applicable to
nonliteral copying or derivative works violations are much less susceptible to
generating certain outcomes when courts review these issues. In contrast,
literal copying, when well proven, makes for a more predictable outcome.

All these rights, and potentially other rights protectable by copyright, are,
paradoxically, the foundation of the innovative open-source approach.
Copyright rights attach upon fixation. That is, from the moment the code is
originally authored, to the extent it contains copyrightable subject matter, i.e.,
original expression, the protection attaches.72 The open-source approach
leverages this protection to extend “additional” control over the work. But the
“additional” control imposes conditions that effectively ensure that the work is
freely usable. This is the antithesis of traditional copyright-based licensing
controls. But it is the innovation upon which the open-source approach is
based. It uses the control of copyright to ensure that the collaborative aspects
of the software persist: source code availability and royalty-free use.

Although copyright is the dominant traditional intellectual property
regime applicable to software, it is not the most recent entrant to the scene.
That distinction belongs to patent law, where the protective rights do not attach
automatically as in copyright, but, when they do apply, are more powerful in
certain, particularly important ways.

3. Patent Protection

Patent protection for software occurs in two general ways. These spring

from the statutory definition of patentable subject matter: “Whoever invents or
discovers any new and useful [(1)] process, [or, (2)] machine, manufacture, or
composition of matter, or any new and useful improvement thereof, may obtain

7217 U.S.C. § 102(a) (2000). Of course, registration of the copyright is advisable, and
necessary in certain enforcement situations, but the burden of copyright registration is slight
compared to the efforts required to keep a trade secret or apply for patent protection.

No. 2] OPEN-SOURCE SOFTWARE 591

a patent therefore, subject to the conditions and requirements of this title.”73
Patentable subject matter is the first of five patentability requirements, the
other four of which I will not discuss except in passing. Once software was
judicially determined to qualify as patentable subject matter, like any
technology, any particular computer program still needs to meet the other four
requirements for a patent to issue.74 Following the statutory definition,
patentable subject matter is thought to fall into two broad categories: process
patents and product patents.

The product patent category encompasses the three statutory terms
“machine, manufacture, or composition of matter.” Under this category patent
rights would attach to software when the software was part of a product. This
most often occurs when the software controls a machine or implements aspects
of an apparatus.75 For example, the office copier that you may regularly use
could very well contain software covered by patent protection.76 The office
copier software likely contains only the object code instructional composite for
the software. Even so, a product patent can cover such software within the
context of the machine or apparatus. These patents cover the particular
combination of the machine or apparatus, in cooperation with functionality
expressed by the software. This functionality must be disclosed in the patent
document, but is typically not given in source code. Rather, most patents
employ a stylized or symbolized expression of the software’s “routines” or
algorithms.77 In other words, the patent document discloses a stylized
expression of the high-level instructional composite, used with the machine.
Harkening back to the Bavarian-style coriander chicken recipe analogy, the
stylized expression would be like a summary or diagram illustrating the recipe.
Thus, the stylized algorithmic expression is often “higher-level,” meaning
more abstract, than the programming language itself. Until the late 1990s,
product patent coverage was the primary mode of software patent protection
available.

7335 U.S.C. § 101 (2000).
74Along with meeting the patentable subject matter requirement, an invention needs to

meet the following four additional requirements to obtain patent protection: (1) utility,
(2) novelty, (3) non-obviousness, and (4) disclosure requirements. 35 U.S.C §§ 101–103, 112
(2000).

75GREGORY A. STOBBS, SOFTWARE PATENTS xxix (2d ed. 2000) (“Software has broken free
of its containment vessels and has leaked into everything: your VCR, the transmission of your
car, the typesetting equipment that printed this book, and even the air traffic control system
guiding your next landing.”).

76For example, see U.S. Pat. No. 6,137,640 (issued Oct. 24, 2000), claiming a beam focus
adjustment apparatus for image-setting equipment, in which the claim includes elements for a
computer program to adjust the focus of a light beam based on the sensed temperature of the
copying medium.

77STOBBS, supra note 75, at 277–78 (“In patent application practice, source code provides
too much information and may not adequately identify what is new and inventive from what is
old and commonplace.”).

592 UTAH LAW REVIEW [2004: 563

Under the process patent category, since the late 1990s, a computer
program can qualify outright as patentable subject matter. The machine or
apparatus context is not necessary. Thus, the patent covers an algorithm, as
long as it is specific enough to produce a concrete, tangible result, and does not
fall into one of a few very narrow exceptions. Process patents written to cover
software freed from the machine or apparatus context are potentially much
broader than product patents incorporating algorithm coverage.

With broader coverage,78 process patents are troubling for the open-source
approach.79 As with patented technology generally, software that infringes a
valid process patent does so even if the software was independently created.
This circumvents the open-source copyright-based license. Users of the
software comply with the license by observing the conditions. But an unrelated
third-party can hold process patent rights that block open-source users from
running the software.80 To run the software would mean infringing the patent.
Since the mid-1990s, software patent applications in the U.S. Patent and
Trademark Office have grown dramatically.81 Thus, open-source-blocking
patents could exist now. In addition, third-parties could strategically obtain
patents to competitively disadvantage open-source products.82

Process patents raise these issues for all software generally, but the proof
of infringement is more easily obtained with open-source software because the
source code is available. The very feature that makes the open-source approach
attractive and beneficial puts it front and center in the target for patent
infringement.83 The object code instructional composite, when executing in the
computer, is the action that infringes the process patent. But traditional
software rarely distributes the source code with the object code. As a result,

78For example, assume that a valid product patent covers software in a copier that

efficiently displays on the copier’s interface a digitized number, which counts up as the copier
makes each copy. If the same software were used to display a counting-up number on a display
showing the number of visitors to a Web site, the copier patent would not be infringed. Now,
changing the example, assume that the software is covered by a valid process patent that
generally claims protection for a specific, efficient algorithm to display a counting-up number.
This is a broader patent because both the copier and Web site display may infringe the patent.
Indeed, depending on how the process patent is drafted, a wide variety of display technology
employing the software may infringe.

79Robert W. Gomulkiewicz, After 30 Years, Debate Over Software Is Still Noisy: Do
Current Laws Protect Too Little or Too Much?, 25 NAT’L L.J., May 12, 2003, at S10
(“Programmers, particularly those from the open-source movement, expressed concern that
software patents stifle, rather than stimulate, innovation.”).

80See Bessen, supra note 5, at 26, 28–29.
81Id. at 27.
82Id. at 28–29.
83McJohn, supra note 5, at 49. McJohn argues, however, that systemically and over the

long run, open-source code may inhibit patent infringement suits because open and available
source code increases the chance that litigants will discover patent-invalidating prior art. Id. at
50–52.

No. 2] OPEN-SOURCE SOFTWARE 593

without actually filing suit and obtaining discovery, it can be substantially
more difficult to determine if traditional software potentially infringes.

Software patent coverage troubles the open-source approach in other ways
beyond my source code focus in this Article. There are also other aspects of
software patent protection that do not bear on computer program source code,
and as a result are beyond the current discussion. The critical point is that
patent protection circumvents the copyright-based license. Patent protection
allows circumvention via blocking rights under a different mode of traditional
intellectual property protection.84

Recent history has witnessed an upswing in software patents, so the risk
of open-source shackling is real, growing, but latent. As the open-source
approach picks up more software projects and products, the potential grows for
collision between the systems. As the human-readable instructional composite,
source code orchestrates the computer program that delivers the desired
computing result via the operating system and hardware. There is tremendous
flexibility to implement algorithms in source code in a variety of ways. But
that flexibility is not unlimited. The range of flexibility decreases as the
number of software patents in an algorithmic area increases.85 Thus, besides
the threat specific patents may pose to specific open-source projects, software
patenting may generally impede growth of the open-source approach by taking
up “algorithm space.”

84How does patent protection, which circumvents the openness of the open-source

approach, work for software? The source code implements an algorithm or “recipe” which may
be protected by patent rights. Software patents are written to cover specific algorithms, in
specific contexts, that deliver certain tangible results. Even with this specificity and context, they
can obtain very broad coverage. The patent instrument ends with a series of “claims.” Patent
claims are the legal definition of the holder’s right to exclude. Typically the claims describe the
invention in a variety of ways, sometimes claiming the invention broadly, sometimes narrowly.
A process claim will describe the algorithm in English-language statements. The claim may
employ terms of art for skilled programmers, but the claim will not be a direct recitation of the
computer program’s source code. Indeed, this would be a poor approach by the patent attorney
because it would result in more narrow coverage. A general, technological description of the
context-specific, tangible-results-producing algorithm provides much broader coverage. Such a
patent claim could cover a software instructional composite implementing the algorithm written
in either the “C” or “C++” or “Pascal” language. Indeed, it is not strictly necessary for the patent
applicant to supply any source code with the application disclosure, so long as the disclosure
provided enables a person skilled in the relevant programming art to practice the invention. In
other words, the patent must describe (legally speaking, “claim”) the “process” that it protects.
When this process (the claim) maps to a software instructional composite, both its source and
object code are effectively shackled if the patentee enforces the patent.

85See Bessen, supra note 5, at 13 (describing problem of “patent thickets” and their
potential to inhibit open-source software).

594 UTAH LAW REVIEW [2004: 563

Among the four major types of intellectual property, patent protection is
most at odds with the open-source approach. Trade secret protection is
inherently inconsistent with open-source software. Trademark law is an
important adjunct, performing its traditional function to protect source-
indicating significance for particular open-source software products, or to
support certification programs that software meets some accepted definition of
“open.” In contrast to the other three areas, copyright law provides the
foundation for open-source software. It implements, through generally
applicable conditional licenses, the central tenets of the open-source approach,
including source code availability. This enables collaboration, which occurs
more effectively when programmers share the source code and implement
computer program functionality with the understanding that all others can see
and review the source code.

III. OPEN-SOURCE SOFTWARE

The growth of open-source software has been impressive. Supported by

popular use in key Internet-infrastructure applications, the movement has
achieved technological, social, and commercial successes. Grounded in the
foregoing discussion of computing’s three elements and the traditional
intellectual property regimes bearing on source code, this Part highlights the
history and nature of the open-source approach. This Part further sets the stage
for the sections that follow, examining the central conditions that define the
open-source approach, and then expressing a form of Collaborative Integrity
for software, reminiscent of authors’ and artists’ right of integrity in civil law
systems.

A. The Open Source Approach

Ideology sparked the open-source movement.86 Programmers found

benefit in the open-source approach and flocked to it, both for those benefits
and in kinship with its underlying ideology. This ideology flipped traditional
copyright. Instead of using copyright to control, the open-source approach used
it to require freedoms. This movement toward open-source freedom
corresponded with the rise of the Internet and its various strains and claims of
cyber-freedom.87 As programming talent collected around the open-source
approach, projects appeared. Then, some projects grew into products, some
widely used. Paradoxically, this “free” software movement then attracted

86See Stallman, supra note 45, at 55–56.
87See LESSIG, supra note 44, at 24–25 (introducing an argument to debunk common notion

that cyber-space and the Internet are inherently and permanently “free” or not able to be
regulated).

No. 2] OPEN-SOURCE SOFTWARE 595

investment, entrepreneurs, and support from many well-known information
technology companies.88

The open-source approach also exemplifies private provision of a public
good.89 The approach may generally define a “recipe” for private provision of
certain public goods. Certainly, a wide variety of important software
technologies are available as public goods due to the open-source movement.
Some commentators have abstracted the open-source approach into a more
general model of public-good provision.90 This aspect of the open-source
movement is an important feature of its mainstreaming, both commercial and
otherwise.91 But this mainstreaming would not have occurred without the
originating ideology that sparked the movement.

88See Brian Behlendorf, Open Source as a Business Strategy, in OPENSOURCES, supra note

2, at 149, 149–52 (arguing that open-source software is “indeed a reliable model for conducting
software development for commercial purposes” when the open-source project is a technology
platform, because the open-source platform provides greater market growth due to
standardization); William M. Bulkeley, Out of the Shadows: Open-Source Software is not only
Becoming Acceptable; It’s also Becoming a Big Business, WALL ST. J., Mar. 31, 2003, at B6
(noting that “major companies like IBM, Sun and Hewlett-Packard Co., awakened to the profit
opportunities in providing hardware and services linked to free software, are paying some of
their programmers to work on Linux and other open-source software”); Josh Lerner & Jean
Tirole, The Simple Economics of Open Source 35, at http://papers.nber.org/papers/w7600.pdf
(last visited Feb. 12, 2004) [hereinafter Lerner & Tirole, Simple Economics] (describing
possibility for companies to benefit indirectly from open-source project by operating in
complementary proprietary market segment).

89Lerner & Tirole, Simple Economics, supra note 88, at 2 (questioning why “thousands of
top-notch programmers contribute freely to the provision of a public good”); Lawrence Lessig,
Open Source Baselines: Compared to What?, in GOVERNMENT POLICY TOWARD OPEN SOURCE
SOFTWARE 50, 56–59 (Robert W. Hahn ed., 2002), available at http://aei-brookings.org/
admin/pdffiles/phpJ6.pdf (last visited Feb. 12, 2004) (discussing public goods theory in context
of software); Siobban O’Mahony, Guarding the Commons: How Community Managed Software
Projects Protect their Work (2003), at 3, at http://opensource.mit.edu/papers/rp-omahony.pdf
(“Open-source software shares some similarities with privately produced pure public goods, but
also differs from traditional definitions of public goods in important ways.”); David P. Myatt &
Chris Wallace, Equilibrium Selection and Public-Good Provision: The Development of Open
Source Software, 18 OXFORD REV. OF ECON. POL’Y 446, 448 (2002) (“[O]pen-source software is
a classic example of a pure public good.”).

90See Benkler, supra note 4, at 369, 383, 434–36 (postulating peer-production model as
alternative to organizing production according to markets or firms). In a larger discussion of the
trade-offs for weak versus strong intellectual property rights, in which open-source software is
given as an example of a beneficial weak-intellectual-property-rights regime, one commentator
notes that “[l]egal practice itself might offer a nice illustration of the promise of progress in spite
of weak property rights. New legal arguments are cited, copied, and exploited as soon as the
imitator likes, and yet there is no apparent shortage of brief writers or of talented persons
entering the field of law.” Saul Levmore, Property’s Uneasy Path and Expanding Future, 70 U.
CHI. L. REV. 181, 185 (2002) (citation omitted).

91See Behlendorf, supra note 88, at 150–52 (noting importance of freely available and
standardized technology platforms to create commercial opportunities around open-source
software).

596 UTAH LAW REVIEW [2004: 563

1. Ideological Origins

The open-source approach values source code. It finds software more

valuable with source code. It expresses these values in response to the
command-and-control programming methodologies that early computing
developed in response to a variety of factors. It codifies these values in a
copyright-based licensing approach. A few widely used licenses exemplify the
approach. But it is potentially extensible to support a variety of values.
Ultimately, the open-source approach rests on the licensing power to impose
conditions on the use of a work. If a user meets the conditions, she has
permission. This Subsection reviews the origins of open-source values, and
sketches their implementation.

(a) Early Computing and Software Development

Given their incentives, companies tend to keep secrets, including

computing secrets, at least until disclosure has a benefit or potential benefit.
Rebellion against this practice is an originating factor for the open-source
movement.92 Source code secret-keeping, and its anti-collaborative effects,
however, became endemic to early computing due to two factors present from
the start of computing through the early 1980s: the centralized nature of the
technology93 and its increasing commercialization. The centralized computing
design was a technological constraint during this era. This constraint, however,
contributed to a regime of control over the computing assets, especially as their
commercial value grew.

Corporate law requires companies to shepherd assets and employ them
productively. As computing assets grew in importance, so did company
practices to restrict access to various aspects of the technology, including

92Harry Rubin & Jason Isaacs, The Myths and Realities of Open Source Code Licensing:

Business and Legal Considerations, 8 No. 3 CYBERSPACE L. 2 (2003). The authors describe the
impact of open-source development as follows:

[O]pen source development is a challenge of taboo-breaking dimensions. Software
development has traditionally been conducted in acute secrecy and subject to strict
confidentiality, development, proprietary and non-disclosure agreements. Source
code, always considered the “crown jewel,” has been vigorously protected. Most
source code disclosures occur only after a narrowly defined source code escrow
release condition has been triggered. Open-source licensing now requires software
companies to eschew the very axioms which have governed software since the dawn
of the industry and adopt the polar opposite approach.

Id.
93The computers of these past eras required special facilities and care. Accordingly,

companies housed their computing equipment in secure and central locations. They granted
access to programmers, users, and administrators through “dumb” terminal devices with no
computing power or graphical capability by today’s standards. Users and programmers
interacted with the remotely located computer via the terminal and perhaps a printer.

No. 2] OPEN-SOURCE SOFTWARE 597

physical access to the machine, as well as user access to the operating system
and the source code of computer programs on the machine. Reducing access
decreased operational disruption risks. Information technology and the
computing assets became more valuable and mission critical. As a result,
companies ratcheted up the control over these assets. Operating systems
responded to this need by offering a hierarchy of user levels, allowing
administrators into the system with full “power” to change and configure the
system, while restricting users and programmers to specific environments
within the hierarchy. This was the era when “big iron” dominated computing
and defined the era of centralized computing. The processor was secreted away
somewhere, access was via terminals, and only a few administrators had the
power to range throughout the entire system. This hierarchy of control, it was
thought, better protected the corporate assets. It also facilitated secret-keeping
for source code.

Smaller computers (predominantly personal computers) and
communications technology (primarily computer networks) broke the “big
iron” centralized computing mold and ushered in the era of distributed
computing. Networking technology led to the Internet, an interconnection
among networks (or computers) based on standard protocols. Now every
programmer had her own processor, her own computer.94 As networking grew,
she was connected with an increasingly large community of technologists. This
technological change of the 1980s through the present provided fertile soil for
the early proponents of the open-source approach.

That approach was characterized by a belief in the inherent value of
making source code available, of keeping the source code free.95 Source code
is a text to be shared, read, and studied. It should be treated as the literature of
computing technology. Like literature, its dissemination enlightens minds and
teaches lessons of success and failure. It facilitates collaboration, augmenting,
and leveraging the works of others. Freely available source code made
programming more fun and made software transparent, and thus more
valuable.

This approach was rebellion because, like the “big iron” under their
control, companies also needed to control the groups programming the “big
iron.” These groups were human capital, assets from which companies also
needed to wring profits given the corporate mandate. The management
practices that developed to fulfill this mandate embodied traditional corporate
command and control over the software development process.96 A hierarchy
provided the structure for command and control. Spots in the hierarchy

94BROOKS, supra note 3, at 281–82.
95See Eben Moglen, Anarchism Triumphant: Free Software and the Death of Copyright, 4

FIRST MONDAY, Aug. 1999, at http://www.firstmonday.dk/issues/issue4_8/moglen/index.html
(“[T]urning software into property produces bad software”).

96See BROOKS, supra note 3, at 35–37 (describing programming teams).

598 UTAH LAW REVIEW [2004: 563

determined specialization of function. The user hierarchy in the operating
system helped enforce the organizational hierarchy among the programmers. It
also could partition the source code on large projects. The user hierarchy
would give the programmer access only to specified sections of project source
code.97 To the open-source progenitors, this corporate command-and-control
approach was, at best, counterproductive. It devalued source code. The
teachings of the code were unavailable. At worst, the progenitors found the
hierarchical software development environment creativity-stifling and
inapposite to professional freedom.

“Big iron” computing and corporate organizational techniques caused the
traditional, hierarchical software development process, but in its course, the
open-source approach fermented in opposition to the allegedly ingenuity-
destroying aspects of the source-hiding hierarchical regime. This regime hid
some of the source from some of the programmers in the typical large software
project. But it hid all of the source from all of the users. Customers and end
users, whether they accessed the software remotely, or ran it on their own
computers, typically did not have access to the source code. This, from the
perspective of those in the open-source movement, was also counterproductive.
The ferment against the traditional hierarchical regime resulted in a
copyright-based licensing approach with a goal to require source code
availability. This licensing approach expresses and codifies open-source values
and benefits. Later in this Article, I explore the licensing conditions in more
depth. In order to facilitate the remaining discussion of open-source’s history,
nature, and status in this Part, however, the next Subsection sketches the
approach in more detail than heretofore discussed.

(b) Sketching the Open-Source Approach

The open-source approach employs licensing to achieve its aims. Many

different licenses are used for open-source software. One license has particular
prominence due to its author and popularity.98 Richard Stallman is a progenitor
of the open-source movement and author of the General Public License
(“GPL”)99 This Subsection will discuss the GPL as a paradigmatic example of

97See Sanne te Meerman, Puzzling with a Top-Down Blueprint and a Bottom-Up Network,

at http://opensource.mit.edu/papers/temeerman.pdf (Feb. 2003), at 16, 17 (describing
management, organization and coordination differences between Linux development team and
Microsoft Windows development team).

98Josh Lerner & Jean Tirole, The Scope of Open Source Licensing, at
http://papers.nber.org/papers/w9363.pdf (Dec. 2002), at 23 [hereinafter Lerner & Tirole, Scope
of Licensing] (concluding from survey of popular Sourceforge.net open-source project
repository, holding almost forty thousand projects, “the dominant role of the General Public
License” was apparent because approximately three-quarters of projects used the GPL).

99See GNU, GNU General Public License, at http://www.gnu.org/licenses/gpl.html (last
visited Feb. 12, 2004) [hereinafter GNU, GPL] (displaying General Public License).

No. 2] OPEN-SOURCE SOFTWARE 599

the open-source approach. Other licenses, however, protect open-source
software with varying differences.100 The scheme uses copyright. Without the
conditional permission in the open-source license, the user faces copyright
infringement.101

Thus, the open-source approach rests on the licensing power to impose
conditions on the use of a work. If a user meets the conditions, she has
permission. Using the GPL as an example, what use rights are allowed, and
what are the conditions defining what I call the open-source approach? In
broad terms, the license allows one who takes the software to use it, modify it
and redistribute it if she (1) makes the source code available, (2) does not
charge royalties for software use, (3) propagates the same terms for
redistributed or modified software, (4) includes notice of the GPL terms,
(5) attributes modifications to the maker, and (6) disclaims warranties and
liabilities.102

To illustrate the GPL’s effect on software licensed under it, consider the
following example. Assume that Allen creates a program we will call
“GoneFishingA” that searches the Internet specifically looking for information
about fishing, allowing the user to specify the type of fishing. Allen publishes
GoneFishingA on his Web site, and tags the program with notice that it is made

100GNU, Various Licenses and Comments about Them, at http://www.gnu.org/

licenses/license-list.html (last visited Feb. 12, 2004) (listing dozens of licenses that implement to
some degree open-source approach, and commenting as to whether licenses are compatible with
GPL and/or meet Free Software Foundation’s definition of “free” software); Open Source
Initiative, The Approved Licenses, at http://opensource.org/licenses/index.html (last visited Feb.
12, 2004) (listing licenses under which distribution of software qualifies for use of OSI
certification mark because OSI has determined that listed licenses meet its definition of open-
source software).

101My focus in this Article is the open-source license as a document granting permission,
rather than as a contract, although in a later section I review some of the issues raised by the
open-source license as a contract. See infra section III.B.5. Practically, however, this distinction
can be important, for open-source licensing and for licensing generally, in particular for the
scope of remedies. See Sun Microsystems, Inc. v. Microsoft Corp., 188 F.3d 1115, 1122 (9th
Cir. 1999) (holding that whether Sun could enjoin Microsoft based on license agreement from
Sun to Microsoft for Sun’s Java technology depended on whether license provisions in question
were “license restrictions or separate [contractual] covenants”). My thanks to David McGowan
for raising this point.

102GNU, GPL, supra note 99. The GPL has other terms, but these are the primary
operational terms and are sufficient for the present discussion. The list has latent repetition for
emphasis because the GPL itself disclaims warranties and liabilities. Thus, propagating the same
GPL terms for redistributed or modified software disclaims warranties and liabilities for such
software. To ensure that sufficient source code is available with the software so that others can
compile it and produce the object code executable instructional composite, the GPL provides a
specific technical definition of the source code that must be made available. This definition
recognizes that the computer program is a composite of instructions, data, and interfaces in a
sequence and hierarchy. This instructional composite will produce a particular desired
computing outcome, directly as object code running in the computer, but which is indirectly
scripted by the source code.

600 UTAH LAW REVIEW [2004: 563

available under the GPL. If Betty downloads a copy, she can use it under the
GPL terms. Betty determines that GoneFishingA is slow when searching for
information about deep-sea sport fishing. Having the source code from the
download, she adds new routines for faster deep-sea sport fishing searches. But
Betty also likes deep-sea kayaking, so she programs her new routines to
optionally search for kayaking information. Betty has created a new source
code instructional composite, with some of Allen’s GPL source code, and
some of her new source code. To take this step, merely creating the
modification, in compliance with the license, Betty needs to attribute to herself
the new routines she added to GoneFishingA. This is done through the
comments that programmers can embed in the source code instructional
composite. If she merely uses for herself her new version of the program,
“GoneFishingB”; she need do no more to comply with the license.

Next, assume that Betty posts GoneFishingB to her own Web site, inviting
others to download it. Under the GPL, if she charged royalties for use of
GoneFishingB, she would contravene the license terms. To comply with the
license, she must make all of the source code for GoneFishingB available,
including both hers and Allen’s. She must ensure that the software includes
notice that the GPL terms apply, which propagates the same terms to takers of
GoneFishingB, including the GPL’s warranties and liabilities disclaimer.

Finally, assume that Carol downloads GoneFishingB. Carol reprograms
part of it and adds new routines. Carol calls her program “GoneOutdoors”
because it searches for information about any outdoor sporting activity. Her
new code is intermingled with Allen and Betty’s code. Despite the
intermingling, if Carol attributes, through commenting, her changes and
additions, and complies with the other GPL terms, she may distribute
GoneOutdoors as open-source software. The mere fact of having changed the
name for the software does not change the GPL applicability. Carol makes
GoneOutdoors available on her Web site. Various users download and run it,
including Allen and Betty. The example does not need to stop at three
iterations of the software, from GoneFishingA to GoneOutdoors, but it shall,
the point hopefully being made: the open-source approach allows the sequence
to continue along a chain of developers, or, within a web of “cross-using”
developers. Viewed through the three elements of computing developed above,
the figure below conceptualizes the GoneOutdoors software.

No. 2] OPEN-SOURCE SOFTWARE 601

Op. Sys. & HardwareIC for GoneOutdoors

Operating System
(which is also a

computer program)

Computing
Hardware

Compiler
Translator

(also a
computer
program)

Executing
Instructional
Composite

ICsource code

ICobject code

Allen’s
code

Betty’s
code

Caro l’s
code

Op. Sys. & HardwareIC for GoneOutdoors

Operating System
(which is also a

computer program)

Computing
Hardware

Compiler
Translator

(also a
computer
program)

Executing
Instructional
Composite

ICsource code

ICobject code

Allen’s
code

Betty’s
code

Caro l’s
code

Figure 2

Contributed Code to the Hypothetical
“GoneOutdoors” Open-Source Software

In this example, three user-programmers successively constructed

GoneOutdoors. This raises a variety of intriguing copyright questions,
including issues related to authorship, derivative works, and the potential scope
of source code nonliteral infringement.103 Another set of issues is the role of
contract doctrine, if any, in the chain (or web) of GPL permissions or
commitments.104 Licensing law is sometimes characterized as a species of
contract law. With the open-source approach, however, the license involved

103For authorship, there is a “complex, often unclear body of law dealing with joint

ownership,” which is particularly difficult to determine rights when two or more persons or
organizations collaborate to develop software. NIMMER, COMPUTER TECHNOLOGY, supra note
62, § 4:15, at 4–32. Without the permission in the license, the downstream modifiers of the
open-source project might infringe the original holder(s) derivative work right along with the
reproduction right. Traditional analysis of the derivative work issue may be strained because
“digital technology changes the rules and scope of the issue.” Id. §1:104, at 1–274. Finally,
besides direct literal infringement by downstream users, because users undoubtedly employ
some of the original code unadulterated, their modifications, but for the license, might also
require application of legal tests for nonliteral infringement of source code.

104See McGowan, supra note 4, at 289–302 (discussing legal status of GPL license from
perspective of contract law and identifying variety of issues that may arise).

602 UTAH LAW REVIEW [2004: 563

may spring from other areas rather than strict contract doctrine. These issues
are explored later.

Several features of the open-source approach are more important to take
from this initial sketch. First, one who takes and uses the software must fulfill
enumerated obligations to satisfy the license’s conditional permission to use.
Second, modifying and redistributing the software triggers a more expansive
set of conditions. Third, the conditions emphasize and enable successive,
collaborative development of the software. As with GoneOutdoors, multiple
programmers can contribute to the source code. And, they can each become
users of the other’s modifications, generating a copyright ownership and
licensing web.105 Fourth, the successively built web of ownership is a unique
by-product of the open-source approach. These features highlight the
innovative and novel characteristics of the approach. They are also, in addition
to the values the approach embodies and expresses, a substantial determinant
of the growth and success of various open-source products.106

Open-source collaboration, expressed by the GPL as a freedom to share
and change “free” software, implemented under the open-source approach, has
proven thus far to tap and release substantial programming energies. This
release, often given as volunteer effort, has produced important software
components underlying the Internet. The next Subsection will review the
paradigm-challenging effect these open-source software products have had on
traditional software development.

105McGowan, supra note 4, at 259.
106These values are expressed in the preamble text of the GPL:
The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the . . . General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all
its users
When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive
source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs; and that you know you can do these things.

GNU, GPL, supra note 99.

No. 2] OPEN-SOURCE SOFTWARE 603

2. Projects and Products

(a) The Growing Trove of Open-Source Software

Open-source software ranges across all types of computer programming

projects. There is a great variety and quantity of projects.107 One could classify
the vast variety of open-source projects along many metrics. One obvious
metric would be the number of developers.108 Another would be the scope of
the software project or product. Is it a large all-encompassing program of the
sort that often have millions of lines of code, such as an operating system or a
suite of personal productivity applications, or a relatively small component of a
larger software product, such as a report generator for a programming
environment? A third metric would be its technological aspects: what
operating system is it for (assuming it is not an operating system itself), what
type of application is it, or what source language is it written in? Another
classifying approach would be the targeted users of the software.109 Some
software envisions technologists as its end users. Other software, by nature of
its intended function, envisions non-technologists as the primary end users.110

107See generally SourceForge, What is SourceForge.net?, at http://www.sourceforge.net

(last visited Feb. 12, 2004) [hereinafter SourceForge, What is SourceForge] (describing this
Web site’s services to open-source developers in which Web site provides free “centralized
place for Open Source developers to control and manage Open Source software development”).
SourceForge hosts “tens of thousands” of open-source projects. Id. By “hosting” an open-source
project, the SourceForge Web site provides a number of usefully aggregated capabilities. These
include: (1) allowing users to download versions of and revisions to the open-source software;
(2) customer support communications and tracking ability; (3) programming team
communication and collaboration tools such as discussion lists and projects diaries; and (4) other
tools related to compiling, promoting, enhancing, and managing the software over time. See
SourceForge, Services to Projects We Host, at http://www.sourgeforge.net (last visited Feb. 12,
2004). The title of this Subsection, in particular use of the word “trove” is stylized from the
“Trove, a massive database of Open Source projects.” Id. The Trove is available for searching at:
http://sourceforge.net/softwaremap/trove_list.php.

108Kieran Healy & Alan Schussman, The Ecology of Open-Source Software Development,
at http://opensource.mit.edu/papers/healyschussman.pdf (Jan. 29, 2003), at 2, 9–13 (describing
large scale survey of the SourceForge.net database of open-source software projects, and finding
that most projects have small number of developers).

109See Lerner & Tirole, Scope of Licensing, supra note 98, at 21, 38 tbl.2 (classifying
open-source projects along various metrics to determine whether certain types of projects were
more likely to select certain types of licenses).

110The point about the available variety of open-source software, and the many ways to
classify it, is two-fold. First, the variety demonstrates the popularity and success of the open-
source approach in attracting programming talent to start and contribute to projects that,
presumably, users or other programmers find useful, and for which, presumably, the
participating programmers find interesting. Second, the variety of projects and products implies
robustness in the open-source approach. Something about the approach must work well to
release the latent energies that it has.

604 UTAH LAW REVIEW [2004: 563

Two of the surmised metrics are related: small projects will have a small
participating group,111 but the opposite will typically be true for large projects.
An example is GoneOutdoors. If Allen and Betty join Carol to enhance
GoneOutdoors, collecting and issuing their code on and from Carol’s Web site,
with Carol acting as the group facilitator, their collaborative activity is an
example of a small-group open-source project. If the product is valuable and
more effective than competing software, a user base may emerge.

Open source, however, does not stop at small projects.112 Indeed, it is
large projects, most notably an operating system, Linux, and a Web-page
server, Apache, that have catapulted open-source software to success and
repute. With this success comes challenges, debate, and, to some, notoriety.

On the other hand, my point is only valid if taken in its broadest sense: the aggregate

activity signals something useful, not that every open-source project is successful. The caveat is
because empirical data show that most of the projects registered at the Sourceforge.net open-
source repository are sole-programmer efforts with no additional contributors. See Kieran Healy
& Alan Schussman, The Ecology of Open-Source Software Development, at http://opensource
.mit.edu/papers/healyschussman.pdf (last visited Feb. 13, 2004), at 12 (“[O]nly a tiny number of
projects have more than a handful of developers. . . . [T]here is little or no programming activity
taking place on more than half of the projects.”). There may be several ways to interpret the data,
but it is clear that most open-source projects do not enjoy the success of projects such as Linux.
The aggregate level of activity signals value in the approach, unless all contributors, even those
authoring sole-programmer projects, are foregoing better opportunities for their time and energy.
See Lerner & Tirole, Simple Economics, supra note 88, at 20–25 (discussing programmer
incentives from economic perspective).

111Some projects are the hobbyist’s sole output. The products from these projects may only
ever be used by a few others. Sometimes, however, these products develop a popular following.
Sometimes projects in the “hobbyist” category are learning labs for the programmer, a place to
develop new skills and perhaps develop a user base for her software. Often the sole hobbyist
programs open-source tools, utilities, add-ins, and other components that bring incremental
value to other, larger software. In other cases, small groups gather virtually to develop such
utilities and components.

112Indeed, it may be that the large open-source projects are the truly new phenomena,
while the large number of small or sole-programmer projects are simply a variant of the
“shareware” tradition that has long existed in the personal computer world. See Healy &
Schussman, supra note 110, at 12 (noting that most open-source projects have one developer, or
very small number of developers). “Shareware” is software that someone writes and offers to
others, but only in executable, object code form, and typically with a request that a small license
fee be paid. Matthew A. Liao-Troth & Terri L. Griffith, Software, Shareware and Freeware:
Multiplex Commitment to an Electronic Social Exchange System, 23 J. ORG. BEHAV. 635, 638
(2002). Typically, however, neither the distribution method nor the software itself enforces this
license. Users who take a copy of the software are on their honor to send in a payment.
Alternatively, the shareware version has reduced functionality, and with a small licensing fee a
user can obtain an “official” copy and full functionality. SCOTT, I&T LAW REF., supra note 50,
at 712–13. Thus, one key difference between small open-source projects and shareware is that,
traditionally, shareware was not provided with the source code. See Telephone Interviews by
Rishab Aiyer Ghosh with Linus Torvalds (1996–98), at http://www.firstmonday.dk
/issues/issue3_3/torvalds/ (last visited Feb. 13, 2004) [hereinafter Torvalds Interview]
(discussing preference for open-source approach as opposed to shareware approach prevalent in
personal computer world).

No. 2] OPEN-SOURCE SOFTWARE 605

Each of these two products deserves special mention. One poses a credible
threat to Microsoft’s operating system dominance while the other serves up a
majority of the Web pages viewed around the world on the Internet’s World
Wide Web.

(i) Linux: A Privately Provisioned Public-Good Operating System

Linux is an open-source operating system. Operating systems are

important because they control the computing hardware.113 They are a
foundation technology for the rest of computing. The recent history of
operating systems, in particular on personal computers, revolves around two
stories. The first is the well-known story of Microsoft and its dominance in that
market, particularly for “desktop” computers.114 The second is becoming better
known: the rise of Linux. Like Allen’s GoneFishing computer program that
evolved into a collaborative project among Allen, Betty, and Carol, Linux
began as a single individual’s code that attracted participants and grew under
the open-source approach. The genesis was in 1991, when Linus Torvalds
programmed an operating system “kernel.”115 Torvalds’ original project was to
explore a particular design for an operating-system kernel.116 The kernel that
would go on to become Linux was, in part, a project to comment and improve

113An operating system is itself a computer program. It is a special program that makes the

computer hardware usable. Recall the cook in the kitchen analogy, where the Bavarian-style
coriander chicken recipe was the software, the cook was the operating system, and the kitchen
equipment was the computing hardware. The operating system models the computer hardware in
software, and allows other programs to direct and command the hardware, but only through the
operating system. In the cooking example, it is as if Francis, who owned the kitchen and
employed the cook, was not allowed to go into the kitchen and do anything himself. He could
only ask the cook to do it. This is what an operating system does to other programs that are
commonly called applications. It makes applications ask the operating system ask the hardware
to do work for them. The applications cannot access the hardware directly. They cannot go into
the kitchen, they must ask the cook to do the work in the kitchen.

114See United States v. Microsoft Corp., 253 F.3d 34, 54–55 (D.C. Cir. 2001) (noting that
under even broad operating-system market definition, Microsoft holds more than eighty percent
of market, and that its Window’s operating system “supports many more applications than any
other operating system”).

115BRYANT & O’HALLARON, supra note 46, at 18. Continuing the “cook is the operating
system” analogy, in slightly squeamish fashion, the kernel of the operating system is perhaps
like the cook’s brain and nervous system. At the time he wrote the kernel and made it available
to an online community of programmers, Torvalds was a graduate student in computer science at
a University in Finland. Id.

116Linus Torvalds, The Linux Edge, in OPENSOURCES, supra note 2, at 101, 103–04.

606 UTAH LAW REVIEW [2004: 563

upon certain design aspects of a family of operating systems generally known
under the name “Unix.”117

The traditions that developed in the Unix programming world set the
stage for open-source development: sharing source code; collaborating on the
design and development of software components and projects; effectuating the
collaboration over the network; and loosely and informally directing,
managing, and organizing the collaborative effort.118 The Unix world traditions
were amplified by the open-source approach. When this amplified force met
Torvalds’ kernel project, it propelled the project, under his leadership, and in
combination with GNU project components from the Free Software
Foundation, to a spectacular example of counterintuitive results on many
fronts.119

117The Unix group of operating systems has been in existence and use since the early

1970s. They were primarily used on “mid-range” computers: machines more powerful than most
personal computers, but less powerful than mainframe computers. Although very important to
information technology, mid-range computers are much less numerous than personal computers.
In today’s parlance, sometimes the term “server” approximately corresponds to mid-range
computing machines. They typically do not run Microsoft’s Windows operating system, and
thus, account for only a small share of the operating-system market across all of computing,
measured by the number of machines. The history of programming traditions and activity in
development of the various Unix operating systems presaged the open-source approach. One
major “flavor” of Unix sourced from Berkley, which made the source code available, but under a
license with less conditions than the open-source approach. There was also, to some degree, an
“underground” of trading and taking source code from place to place. This resulted in a degree
of informal, officially unauthorized, but perhaps tolerated sharing. Open Source Initiative, OSI
Position Paper on the SCO-vs.-IBM Complaint, at http://www.opensource.org/sco-vs-
ibm.html#id2791689 (last visited Jan. 27, 2004). Companies also undertook much official
licensing of the dominant flavors of Unix. The end result of this evolution from the early 1970s
to the late 1990s is that there were multiple popular flavors of Unix, all of them very similar,
many of which shared a lineage to one of several common source code origins. The source code
was available to many Unix technologists, both through informal means and via formal
licensing.

118Marshall Kirk McKusick, Twenty Years of Berkeley Unix From AT&T—Owned to
Freely Redistributable, in OPENSOURCES, supra note 2, at 31, 40 (“The history of the Unix
system and the BSD system in particular had shown the power of making the source available to
the users. Instead of passively using the system, they actively worked to fix bugs, improve
performance and functionality, and even add completely new features.”).

119As discussed in note 12, what is commonly called the Linux operating system is a
distribution of software components. Besides the Linux kernel from Torvalds and the other
kernel contributors, the distribution includes important components derived from the Free
Software Foundation’s GNU project. GNU is a “recursive” phrase because, as the name of an
operating-system kernel, it is an acronym that stands for: GNU is [N]ot Unix. Early in his
project, Torvalds decided to use the GPL for Linux in order to use the compiler available for the
GNU project. Torvalds, supra note 116, at 107. The GNU project’s goal was to build a free
operating system, and it started before Torvalds wrote his initial kernel. The GNU kernel,
however, progressed more slowly than Torvalds’ Linux kernel. Stallman, supra note 45, at 64–
66. As a result, the GNU/Linux combination, popularly called Linux, in effect took the first
mover advantage as an open-source operating system.

No. 2] OPEN-SOURCE SOFTWARE 607

Whatever technological innovation present in the kernel that became
Linux was not the dominant reason for its growth and popularity. Rather, the
reason was the open-source approach.120 Being interested in feedback and input
on his design, Torvalds shared the source code with others. Eventually, he
decided to apply the open-source approach to his kernel, using the GPL. This
led to interested participants sharing ideas and expressing an interest in further
extending the kernel source code. Torvalds’ kernel project took off and he
continued to play a coordinating leadership role as literally thousands of
programmers over the years developed and extended the kernel into a full-
fledged operating system.121

Linux is a leading success story of the open-source movement.122
Strikingly, through private efforts, Linux provides a resource that is, in
essence, being offered as a public good.123 Open-source software has the
potential to privately provide public goods on a grand scale. Linux’s impact
already reaches that benchmark. Linux, like software in general when an
abundance of computing power is available, exhibits non-rivalrous
properties.124 As a work covered by copyright protection, excludability is a
possibility. But, under the open-source approach, excluding others’ use has
been mostly disclaimed. The conditional permissions underlying the open-
source approach encourage others’ use. Among other items, the conditions
impose source code availability and prohibit royalties. The conditions do not
negate non-excludability, but may make it less pure because, for behavior that
contravenes the open-source license, there is excludability. But this is a small

120See Torvalds Interview, supra note 112 (“Making Linux freely available is the single

best decision I’ve ever made. There are lots of good technical stuff I’m proud of too in the
kernel, but they all pale by comparison.”).

121Here I continue the “cook is the operating system” analogy. In essence, starting with the
kernel, that is, the cook’s brain and nervous system, the Linux group participants gave the cook
the rest of his anatomy, a torso and appendages, senses and internal organs, a face, and a smile.

122In part, Linux’s success is a function of branding. Torvalds obtained a U.S. trademark
for “Linux” which serves to designate open-source operating-system distributions including his
kernel. Many open-source projects use a trademark to identify the project. Ruben van Wendel de
Joode et. al, Protecting the Virtual Commons, at http://opensource.mit.edu/papers/joode.pdf
(Sept. 2002), at J5. The similarity of “Linux” with the term “Unix” is taken to expresses
appreciation for the inspiration that Linux owes Unix. In addition, the GPL itself may exhibit a
trademark-like effect, signifying that a project is open-source because it employs for protection
the same, well-known license used by Linux.

123Myatt & Wallace, supra note 89, at 447–48; Eric von Hippel & Georg von Krogh, Open
Source Software and the “Private-Collective” Innovation Model: Issues for Organization
Science, 14 ORG. SCI. 209, 209–23 (2003), available at http://opensource.mit.edu/
papers/hippelkrogh.pdf (discussing collective action model for private provision of public good
and its application to Linux).

124Also assuming, of course, that the software does not depend on some other constrained
resource, such as a database that can serve well only a limited number of users, or a
communication channel with limited bandwidth.

608 UTAH LAW REVIEW [2004: 563

range of behavior compared to the dominant activity—using the open-source
software.125

Other measures signal Linux’s success. Estimates put Linux’s share of the
overall operating-system market, which by sheer numbers is dominated by
“desktop” computers running Microsoft’s Windows operating system, at two
percent, but growing.126 In the submarket for “server” computers, which
underlie much of the Internet, the estimate is approximately sixteen percent.127
Commercial mainstreaming, that is, entrepreneurs and companies seeking to
profit by establishing new (or old) business models on the open-source
movement, has primarily focused on Linux. It is an operating system, so it is
foundation technology. As a result, many view it as a threat to Microsoft’s
dominance in the operating-system market and other areas of computing.128
This alone creates commercial opportunities for Linux and other open-source
software.

Linux’s royalty-free “price” also has many large entities interested,
including governments—as users—around the world. Although a variety of
other factors contribute to a user’s cost-of-ownership for any particular
technology,129 the royalty-free nature of Linux and much open-source software
has many users planning to use it more, in order to reduce information
technology costs.130 Many government organizations have encouraged open-

125In the sense of direct use, the open-source approach has complete non-excludability.

The license allows such use. While anyone can use, one contravenes the license conditions by
charging someone else for use of the software in original or modified form. Thus,
commercialization of the software is an excluded activity under licenses such as the GPL. There
may be opportunity costs in using open-source software, such as foreclosing the opportunity to
later charge royalties on software commingled with open-source code, but this is not tantamount
to a prohibition excluding use. See Lerner & Tirole, Scope of Licensing, supra note 98, at 3
(discussing so-called “viral” characteristic of GPL). See also Eric S. Raymond, The Magic
Cauldron, at http://catb.org/~esr/writings/magic-cauldron/ (June 1999), §§ 7–9, at 4–7
(discussing use value versus sale value of software, and noting that most software is developed
for its in-house use value).

126Margret Johnston, IDC: Microsoft Tightens Vise on OS Market, at
http://www.computerworld.com/governmenttopics/government/legalissues/story/0,10801,58278,
00. html (Feb. 28, 2003).

127Robert A. Guth, Free to Choose, WALL ST. J., May 19, 2003, at R6. In the server
market, Linux shipments are estimated to climb to 15.9 percent in 2003 from 13.3 percent in
2002. Microsoft’s estimated shipments, however, were essentially flat from 2002 to 2003, at
approximately 60.4 percent. Id. Other estimates, however, put Linux’s percent share of the
server market in the mid-twenties. Johnston, supra note 126.

128Guth, supra note 127, at R6. (“Linux may be the biggest threat Microsoft faces. Even
Microsoft, at last, seems to recognize that.”).

129David S. Evans, Politics and Programming: Government Preferences for Promoting
Open Source Software, in GOVERNMENT POLICY TOWARD OPEN SOURCE SOFTWARE 34, 42
(Robert W. Hahn ed., 2002), available at http://aei-brookings.org/admin/pdffiles/phpJ6.pdf (last
visited January 8, 2004) [hereinafter Evans, Preferring OSS].

130Bulkeley, supra note 88, at R6.

No. 2] OPEN-SOURCE SOFTWARE 609

source use. Some have even mandated its consideration in government
procurement regulations.

Operating systems like Linux make the computer a computer—they are a
critical foundation technology. Linux has emerged remarkably as a potential
competitor to Microsoft in operating systems. Equally notable, it is a
replacement technology for (while being inspired by) the flavors of Unix that
have dominated mid-range computing for the past three decades. For these and
many other reasons, it is the name bearer for the open-source approach.

I continue the review of key open-source products in the next Subsection
with one additional example: the Apache Web server. Like Linux, it has a clear
product market space, competes vigorously and successfully with Microsoft’s
offerings in this product space, and is a fundamental technology—in this case
for the Internet’s World Wide Web. The Apache project also demonstrates an
open-source software license with minimal restrictions. If the GPL is one end
of the continuum for open-source licenses, the Apache license is the other
extreme.131

(ii) The Apache Web Server: Unrestricted Open-Source Software

Web server software implements the hypertext transfer protocol

(“HTTP”) and associated protocols to “serve up” to Web-browser users the
multimedia pages that define the Web experience.132 The Apache project began
with source code from an early Web server developed by the National Center

131A variety of licenses exist along the continuum. See Steve H. Lee, Open Source

Software Licensing, at http://cyber.law.harvard.edu/openlaw/gpl.pdf (Apr. 28, 1999), at 50–57
(summarizing terms of several licenses, describing “battles” within open-source community as
to which license is best, and arguing that “the question of which open-source licensing scheme is
better boils down to . . . finding the best means to achieve the ultimate goal of sustaining and
advancing the open-source development model”).

132Products like Apache make the Web the Web, just as operating systems make a
computer a computer. Web server software sends information from a “server” computer to a
user’s browser that has requested the information, typically by clicking on a link. The server
computer is special primarily in that it runs the Web server software and has the information
underlying the Web page(s) available to it. Thus, the Web server computer could run one of
Microsoft’s Windows operating systems, and also run Microsoft’s Web server software.
Alternatively, the computer might run Linux and Apache.

610 UTAH LAW REVIEW [2004: 563

for Supercomputer Applications at the University of Illinois (“NCSA”).133 A
group of Webmasters in the mid-1990s, using the freely available NCSA
source code, decided to develop the software to their liking.134 They did so at
first as a loosely organized group, but later formed an entity: the Apache
Software Foundation (“ASF”).135 As a foundation, the ASF could implement
formal structures for governance and management of projects.136 Foundation
leaders also determine when to accept and incorporate submitted changes back
into the “official” ASF version of the software.137 Apache users who submit
changes back to ASF may do so for a variety of reasons, including to fulfill
community norms or to ideologically support the open-source movement, but
also for the practical consideration that it makes management of their
installation easier. A user will typically want the other modifications made to
Apache in future versions. If her modification is one of these, then she
eliminates the otherwise required effort to back-fit her changes into each
successive new version.138 The Apache project has been very successful and, as

133Lerner & Tirole, Simple Economics, supra note 88, at 10; Mockus et al., supra note 4,

at 316. Raymond provides a motivation for the Apache group’s decision to collaborate and build
their own Web server:

The Apache server was built by an Internet-connected group of Webmasters who
realized that it was smarter to pool their efforts into improving one code base than to
run a large number of parallel development efforts. By doing this they were able to
capture both most of the advantages of roll-your-own and the powerful debugging
effect of massively-parallel peer review.

Raymond, supra note 125, § 7.1.
134See Lerner & Tirole, Simple Economics, supra note 88, at 10.
135Apache Software Foundation, Frequently Asked Questions: Answers, at

http://www.apache.org/foundation/faq.html (last visited Feb. 13, 2004).
136Id.
137Because the Apache Web server software is open-source, any user can take a copy and

run it in modified form. Such a user/developer may modify the software for her needs. If she
decides to submit her changes to ASF, she does so in the hope that it will incorporate the
changes into the “official” version. The ASF leaders will evaluate the changes and decide
whether to accept them. Nikolaus Franke & Eric von Hippel, Satisfying Heterogeneous User
Needs via Innovation Toolkits: The Case of Apache Security Software (Jan. 2002), at
http://userinnovation.mit.edu/papers/1.pdf, at 10–11.

138This motivation for submitting changes, avoiding back-fitting costs for new versions,
can exist for any open-source project. Skilled users will generally have a sense of whether their
changes are substantial and important enough, and sufficiently well-implemented, to have a
chance for inclusion. If not, there are other ways for the user to automate and minimize the work
required to back-fit customized changes into new versions of the open-source software. In the
Linux kernel, for example, rather than a group decision as in Apache, Torvalds is intimately
involved in the decision whether to accept changes or additions into the kernel. Healy &
Schussman, supra note 108, at 19–20.

No. 2] OPEN-SOURCE SOFTWARE 611

of June 2003, is on approximately sixty-eight percent of active Internet-
connected computers.139

The Apache open-source license differs from the GPL used in much of
Linux140 in a number of ways. In whole, it is much less restrictive. In essence,
it allows one to take the source code and do whatever she likes with it, as long
as certain attributions and notices are carried forward with modified or
unmodified versions.141 Thus, the Apache license is almost a full dedication to
the public domain, whereas the GPL license is only a partial dedication.142 The
difference is that anyone can use material in the public domain as the basis for
a commercial offering with royalty fees for use. The GPL disallows this. The
Apache license permits it, and does not even require that the source code be

139Netcraft, June 2003 Web Server Survey, at http://news.netcraft.com/archives/

2003/06/12/june_2003_web_server_survey.html (last visited Feb. 13, 2004). This survey polled
just under forty-one million Web servers on the Internet. Microsoft’s various Web server
products, in aggregate, had approximately twenty-four percent of the server installations. Id. The
Microsoft percentage is likely higher if one takes into account internal corporate Web servers
providing “intranets” for companies. Such servers are typically behind an Internet firewall and
thus are not surveyed by the Netcraft methodology.

140Linux, as I use the name here, and in popular use, is really an aggregation of many
software components from various groups within the open-source community. Thus, while most
of Linux is licensed under the GPL, there are components that are licensed under other open-
source licenses. Webbink, supra note 8, at 674 (“[M]any open-source software packages,
including all of the major Linux distributions, contain several of these licenses, and licensees
have not expressed any degree of difficulty dealing with those multiple license schemes.”);
David Wheeler, More than a Gigabuck: Estimating GNU/Linux’s Size, at http://www.dwheeler
.com/sloc (last updated July 29, 2002) (analyzing Red Hat Linux distribution along metric of
source lines of code, which, using automated software tools, in essence counts lines of source
code for each of various components in Red Hat Linux distribution, and in doing so notes license
applied for each component; by lines of code, GPL was specified license for just over fifty
percent of source lines of code).

141Apache Software Found., The Apache Software License, Version 1.1, at
http://www.apache.org/LICENSE-1.1 (last visited on Feb. 13, 2004) [hereinafter Apache
Software Found., Apache License].

142See Bruce Perens, The Open Source Definition, in OPENSOURCES, supra note 2, at 171,
181–83 (describing that GPL does not allow one to take modifications private, but that Apache
license is part of family of licenses that allow great deal of freedom with source code and do not
restrict privatization).

612 UTAH LAW REVIEW [2004: 563

included with redistributions of the software.143 The Apache license does
require that its almost de minimis conditions be applied to successive
redistributions, modified or not.144

Apache is only one of several important Internet technologies that rely on
open-source software.145 It is often paired with Linux for Web-server
installations. As a result, this tandem occupies an important space in the
Internet infrastructure. First, the tandem provides the functionality for a
computer to serve content to users on the Web. Second, each piece of the
tandem operates in direct competition to offerings from Microsoft. The second
point means that these two products are under direct and fierce competitive
threat. Their success in light of that threat is significant for the open-source
movement.

143Of course, most users would not pay for an object-code-only copy of Apache when they

could obtain the software for free from ASF and rebuild it themselves, unless they lacked the
skills to do so or the cost of doing so was more than the redistributor’s licensing price. Similar
dynamics have kept the Apache project from forking—a theoretically dreaded event for an open-
source software project. Forking is when a group takes a copy of a project at a particular stage of
development and marches off in a new direction to implement a different vision for the project.
The new group may want a different set of features and functions, may want to emphasize
different technologies, or simply may be unable to get along with the other developers. See
Joode, supra note 122, at 15, 20–21 (noting that fork can be initiated by developers inside or
outside community, and that fork is complete once it develops to point where there are
irreconcilable differences between two projects, meaning that it is no longer practically possible,
that is, beneficial given costs, to reintegrate two software projects); McGowan, supra note 4, at
263–64, 278 (discussing possible reasons for forking, but noting that it rarely occurs). One
disadvantage that the new, forked project may have is brand recognition—it may be unable to
use the name of the originating software project. Joode, supra note 122, at 20 (“The maintainer
can only demand that a fork receives a new name, as the original name is likely to be
trademarked.”). Thus, trademark law may have an anti-forking effect.

144The substantial differences between the Apache license and the GPL reflect their
history. Stallman wrote the GPL with the specific goal to facilitate the creation of freely
available software (with source code) that could not be privatized in certain ways: no royalties
for use and the same GPL terms must apply to closely coupled software. Stallman, supra note
45, at 59–60. The Apache license, however, derives from what is known as the Berkley Software
Distribution (“BSD”) license, used to release the source code of a flavor of the Unix operating
system developed at Berkley. Joode, supra note 122, at 55–56 (discussing pros and cons of
practically unrestricted BSD license, in particular criticisms from open-source community that it
makes no sense because companies “can use, modify and sell the software and the license does
not require them to contribute anything back to the community that originally developed the
software.”); McKusick, supra note 118, at 42–46 (describing initial decision to offer entire BSD
Unix flavor under BSD license, due to popularity of networking component earlier offered under
license, and discussing later, related lawsuit that pitted other major flavor of Unix, from AT&T,
against free BSD Unix distribution, dispute being whether small number of copyrighted AT&T
components were present in kernel of BSD Unix).

145Wacha, supra note 7, at 20 (noting that key Internet open-source programs include “one
of the dominant Web programming languages (Perl), the program that routes more than 80
percent of all Internet email messages worldwide (Sendmail), [and] the program that is the basis
for the domain name system (BIND)”).

No. 2] OPEN-SOURCE SOFTWARE 613

Linux and Apache are two of the most successful examples of the open-
source approach. They also show that, at least thus far in the development of
open-source software, the prominent projects have been oriented to a technical
user base.146 A group of similarly situated technical users are in the best
position to take advantage of the collaborative opportunities that the open-
source approach offers. These groups need the ongoing access to the source
code to successfully improve the software. Their integrity in the work, as
programmer-authors, is in the source code and the collaborative work that
results from their aggregate effort.

(b) Characteristic Applications for Open-Source Software

The examples of Linux and Apache are both unique and paradigmatic.

They are unique due to their prominence, market share, and importance to the
Internet. They are paradigmatic in that they characterize the current application
space of much open-source software: projects and products for the Internet
infrastructure; or for computing technologists, including programmers, and
affiliated disciplines.147 For example, when the district court in the Microsoft
antitrust trial made its findings of facts that a large number of available
applications supported an operating system’s market power, the court
considered the possibility that Linux might represent a competitive entrant in
the antitrust market that Windows dominated. The court, however, rejected this
finding, in part because the applications available for Linux were insignificant
compared to applications available under Microsoft’s Windows operating
system.148

While many open-source projects since the Microsoft antitrust trial have
developed in non-technologist application spaces, they are a substantial
minority of the open-source movement. This raises the question whether the
open-source approach is more likely to generate projects and products in
certain application spaces, such as platform technologies, but is less likely to

146One counterexample is the Mozilla project, an open-source Web browser. See Mozilla

Org., Mozilla.org at a Glance, at http://www.mozilla.org/mozorg.html (last visited Feb. 13,
2004) (stating that “Mozilla is an open-source Web browser, designed for standards compliance,
performance and portability”). Mozilla is an open-source offshoot from Netscape’s Internet
browser. Netscape dedicated the code to its commercial browser as a strategy to attempt to
capitalize on the open-source movement to infuse its browser with energy from the movement.
Jim Hamerly et al., Freeing the Source: The Story of Mozilla, in OPENSOURCES, supra note 2, at
197, 197–98, 200–03.

147Bessen, Free Software, supra note 5, at 17 (“It is true that most open-source products
are directed at technically sophisticated users, and many are not very ‘user friendly.’”).

148United States v. Microsoft Corp., 84 F. Supp. 2d 9, 23–24, 26 (D.D.C. 1999).

614 UTAH LAW REVIEW [2004: 563

do so in other areas, such as end-user applications.149 Notwithstanding the
present dichotomy and seeming better fit for open-source projects with
technologist products, as opposed to end-user products, open-source projects
such as Linux, Apache, and others, have broad and important commercial
impact.150

3. Commercial Mainstreaming

Besides engendering and facilitating programming volunteerism on an

enhanced scale, the open-source approach also has tapped and released
entrepreneurial and commercial interests that seek to capitalize on the open-
source phenomena.151 The two most well-known examples of this are Red Hat
and IBM. The first is a dot-com boom survivor whose business model is based
on Linux. The second, a mainstay in computing since its beginning, has joined
the Linux bandwagon. IBM’s future business model for its computing products

149Commentators, especially in economics, are studying open-source software to

understand whether the approach is inherently more likely to facilitate projects in certain
computing technology submarkets. See, e.g., Raymond, supra note 125, § 10 (discussing criteria
when open-source approach makes greater economic sense, and contrasting these with criteria
that predict that closed-source approach would be better); Klaus M. Schmidt & Monika
Schnitzer, Public Subsidies for Open Source? Some Economic Policy Issues of the Software
Market, at http://opensource.mit.edu/papers/schmidtschnitzer.pdf (Nov. 2002), at 14 (discussing
competitive disadvantage of open-source development in targeting markets and arguing that it
lacks incentive and organizational structure to aggregate market preferences; for software “it is
not just the amount of effort and investments in innovation that is important. It is also the
direction of technological change and how the innovations respond to what consumers want.”).
On the other hand, other commentators posit general applicability of the open-source approach,
beyond software and source code to information production generally. See Benkler, supra note
4, at 381–84, 434–36 (postulating open-source inspired peer-production model that is alternative
to organizing production according to markets or firms). The degree to whether the open-source
approach successfully generalizes into other endeavors is beyond the scope of this Article. The
possibility, however, is of interest because endorsement and feasibility of the approach in other
information production activities strengthens the approach’s hold on source code.

150Christopher Wood, Special Report: Emerging Technologies, AM. BANKER, Apr. 1, 2003,
at A8, available at 2003 WL 3344972 (discussing and quoting interview with Eben Moglen)
(“Part of what’s driving all of this is [that open-source software gives] people an enormous
benefit not just because the software is of enormously high quality, and low cost, but it allows
migration to low-cost generic hardware, and thus reduces industry dependence on particular
vendors.”).

151John Ousterhout, 42 COMMUNICATIONS OF THE ACM No. 4, at 44, 44–45 (Apr. 1999)
(arguing that on its own, “open-source software lacks essential ingredients for mainstream
adoption,” thus requiring commercial entities to help mainstream software, which additionally
provides greater resources for open-source software); See also Bulkeley, supra note 88
(describing open-source software’s move into mainstream business).

No. 2] OPEN-SOURCE SOFTWARE 615

and substantial service business revolve around Linux.152 In essence, IBM has
discontinued the business of programming its own flavor of Unix in favor of
Linux. Before exploring commercial mainstreaming and its impact on the
open-source movement, we must first look ahead to one aspect of the
paradigmatic open-source license: the GPL. Examining the GPL will aid our
understanding of how companies such as Red Hat and IBM can make money
from Linux, a “free” operating system.

Some open-source licenses, including the GPL, specify that the software
must be distributed royalty-free, but this does not preclude making money
from the open-source software. “Royalty-free” means that an ongoing fee may
not be charged for use of the software.153 However, a distributor may charge
for the initial service of providing the open-source software.154 Red Hat has

152Int’l Inst. of Infonomics, University of Maastricht & Berlecon Research GmbH,

Free/Libre Open Source Software: Survey and Study: Part II—Firms’ Open Source Activities:
Motivations and Policy Implications, at 12 (2002), at http://www.berlecon.de/studien/
downloads/200207FLOSS_Activities.pdf (last visited June 27, 2003, report overview page
available at http://www.infonomics.nl/FLOSS/report) [hereinafter FLOSS Activities] (discussing
IBM’s $1 billion investment in Linux and its other open-source software activities).

153GNU, GPL, supra note 99, § 2(b) (“You must cause any work that you distribute or
publish, that in whole or in part contains or is derived from the Program or any part thereof, to
be licensed as a whole at no charge to all third parties under the terms of this License.”).

154Id. at § 1; Wacha, supra note 7, at 22. In large open-source projects, such as Linux, the
distribution service price represents value for aggregating and packaging the software.

Some may ask whether the same [open-source] software for which companies
charge money is available free on the Web. The answer is yes and no. While the
source code can be reconstituted from several hundred sites (or source trees), even a
talented software engineer may not succeed in creating an exact image. Given the
way Linux exists on the Internet, . . . it is extremely complex to build. To create the
necessary binaries and host environments, a potential user would want to dedicate a
substantial team of engineers working every day in the open-source community.
Moreover, a user then would need to maintain the code (with more than two million
lines in the Linux kernel alone) and update it with new versions of the Linux kernel
and patches, among other things.
For most companies, it boils down to a classic make v. buy decision. Even if a
potential user could find the same code at no charge somewhere, it is usually more
efficient to get that code from expert Linux providers than to develop in-house
expertise. Additionally, a potential user who buys code from a vendor often obtains
warranties, indemnifications, support, maintenance, upgrades, training, professional
services (such as custom software development) by expert developers, and
assurances of a reliable, quality-assured binary distribution

Id. at 23 (citations omitted).
From Wacha’s account, it is apparent that there is a market constraint on the price for

aggregating and delivering the open-source software. If providers raise prices the market may
attract entrants, who can collect the software from the source trees, and regenerate the
distribution package for sale.

616 UTAH LAW REVIEW [2004: 563

done precisely this for low-end, Linux-based systems.155 Red Hat also offers
other Linux distribution packages for high-end computing environments, along
with increasingly sophisticated, valuable support and affiliated services.156
Thus, the open-source approach allows one to charge for a software-related
distribution and support services even while prohibiting, under some open-
source licenses, royalties for use of the software.

The open-source approach enables a number of other business models
beyond the distributor model.157 Red Hat is perhaps the best known example of
the distributor model, but there are also other significant Linux distributors.158
For example, traditional, royalty-licensed software is also a viable business
model. This model is typically possible in conjunction with Linux or other
open-source software designed as a foundation technology.159 Linux’s
function, like any operating system, is to enable other software to run on the
computer.160 The open-source licensing for Linux allows both open-source
software and traditional software to execute on the Linux operating system.
For example, Oracle is the most ubiquitous commercial database software
package in computing. There are many pricing structures under which one can
license use of the Oracle database, but Oracle’s database is not open-source

155At one point in time, Red Hat sold a personal copy of Red Hat Linux for approximately

forty dollars; for this price, one would receive the media containing Red Hat’s Linux
distribution, installation tools, thirty days of service, and documentation. Red Hat Linux 9 Web
Page, at http://linuxstore.se/images/8000.pdf (last visited Feb. 13, 2004). The product
description leads with: “Red Hat Linux 9 combines the latest Linux technology from the Open
Source community in one, easy-to-use operating system.” Id. This signals that Red Hat’s
primary added value for this forty dollar offering is its aggregation of the software into a
distribution package.

156See generally Red Hat Store, at http://www.redhat.com/apps/commerce/ (last visited
June 1, 2003) (listing prices for various “enterprise” versions of Linux distribution packages,
noting that software is “designed for mission-critical enterprise computing and certified by top
enterprise software vendors,” and with highest prices running into four figures).

157Raymond, supra note 125, § 9 (discussing five known and two speculative indirect-
sale-value models for open-source software based business).

158See Michelle Delio, Linux Distributors Gang Up, WIRED NEWS (May 30, 2002), at
http://www.wired.com/news/linux/0,1411,52864,00.html (last visited June 1, 2003) (describing
consortium, United Linux, www.unitedlinux.com, among certain Linux distributors and whether
other distributors such as Red Hat would join); Major Linux Distributions and Distributors, at
http://www.linux.org.uk/Distribution.html (last visited June 1, 2003) (listing major distributors
for Linux, including Red Hat, which is dominant in United States, SuSE, popular in Europe).

159Generally speaking, most open-source software will allow proprietary software to be
associated with it in certain ways without upsetting the open-source license terms. For example,
practically all open-source licenses allow one to distribute proprietary and open-source software
on the same media. For a more detailed discussion of which associations might upset open-
source license terms, see infra Part III.B.4.

160Recall the cook in the kitchen analogy, where the coriander chicken recipe was the
software, the cook was the operating system, and the kitchen equipment was the computing
hardware. Only the cook (the operating system) could implement a recipe (run a software
program) with the kitchen’s equipment (the computing hardware).

No. 2] OPEN-SOURCE SOFTWARE 617

software.161 Even so, a user can run Oracle on Linux.162 Thus, for some
traditional software vendors, open-source software may open new markets,
provided, however, that an open-source project does not arise and supplant the
traditional software vendor’s product market.163 Traditional software is an
industry with tremendous variety. It has many vertical markets and technology
niches. It remains to be seen which segments of the traditional software
industry are amenable to the open-source approach.

A third example of open-source mainstreaming is IBM’s Linux embrace.
IBM’s move, from its own proprietary flavor of Unix, to Linux, implements
another business model promoted for the open-source approach: sell
complimentary goods and services into the market generated by the open-
source foundation technology. In IBM’s case, Linux is the foundation
technology. IBM is selling its computing hardware and a variety of
information technology services. It has traditionally done this; but under a
Linux strategy, IBM’s efforts not only support a movement that competes with

161See OracleStore, at http://oraclestore.oracle.com/OA_HTML/ibeCCtpSctDspRte

.jsp?a=b (last visited June 1, 2003) (describing licensing parameters to purchase license to use
Oracle software, including licensing by number of computers, processors in computer, or users).

162Oracle is #1 on Linux, at http://www.oracle.com/ip/deploy/database/theme_pages/
index.html?linux_02032003.html (last visited June 1, 2003).

163For example, one of the most popular open-source applications is the MySQL database.
See My SQL, at http://www.mysql.com (last visited June 1, 2003) (describing MySQL as “The
World’s Most Popular Open Source Database”). MySQL is an application like the Oracle
database that needs to run on an operating system such as Linux, and which provides data
management capability. The acronym “SQL” stands for structured query language, a
programming language (of a certain sort) to manipulate data in a database. From an uninitiated
view, MySQL is in the same market as the Oracle software, since they are both databases.
However, there is currently minimal threat of actual significant competition despite the apparent
similarity because Oracle is targeted and designed for applications of scope and complexity
beyond MySQL’s capabilities. The two products are in different classes of the database market.
This may not always be the case. One of the questions for open-source software is whether in the
future it will spawn projects in the application product space with the impact and prominence of
its applications in operating systems and Internet infrastructure. See Douglas C. Schmidt &
Adam Porter, Leveraging Open-Source Communities To Improve the Quality & Performance of
Open-Source Software, 2–3, at http://opensource.ucc.ie/icse2001/schmidt.pdf (last visited June
1, 2003) (position paper submitted for ACM Workshop: Making Sense of the Bazaar: 1st
Workshop on Open Source Software Engineering) (describing application types, or “domains,”
where authors question whether open-source approach will be successful, including niche and
vertical markets, low-margin markets, and secure computing markets). See also Raymond, supra
note 125, § 10 (discussing when company should strategically open-source its product to
preempt competitors, be first mover to recruit best community of developers, and transition its
business model from direct rents by software sale to leveraged business model of complimentary
goods and services).

618 UTAH LAW REVIEW [2004: 563

its rival, Microsoft, but also provide other competitive advantages.164 IBM’s
invested resources in Linux, combined with its prominence in computing, are a
notable tipping point for Linux and the open-source approach. They signal
large-scale viability for open-source, or at least for Linux. With IBM behind it,
Linux’s credibility is enhanced, making large organizations more likely to
choose it for their information technology needs. IBM has a mix of product
and service offerings so that even if it no longer makes license royalties from
its flavor of Unix, its overall business prospects are brighter because it can ride
the growth of Linux for a competitive advantage and additional
non-operating-system business.165

These three examples—distribution, traditionally licensed software, and
complementary goods and services—demonstrate the commercial
mainstreaming of the open-source approach. It is an ongoing phenomenon; to
what degree mainstreaming will occur across a greater variety of markets and
applications is a question about which there are many predictions and much
study. The movement from an original ideology, ensuring the freedom to view
and share source code, to an approach of developing and licensing software
that supports new approaches to business, parallels a similar progression in the
Internet: the original notion of a communications network, to support research,
enabled the development of a richer network experience via HTTP and
browser technology, which in turn laid an irresistible foundation for commerce
over the Internet.166 Commercial mainstreaming says several things about the
open-source approach. It signals value in the approach, both in the
opportunities created for new business models and business models recycled to
fit open-source. It foreshadows conflict over the approach as the stakes climb
higher and commercial opportunities fit themselves to the approach,

164It is reported that IBM has invested over $1 billion into Linux-related development. See

FLOSS Activities, supra note 152, at 7. See also Raymond, supra note 125, §§ 9.2, 10 (calling
hardware vendor’s business model “widget frosting” to emphasize that open-source software
makes vendor’s equipment more attractive and tasty).

165Raymond, supra note 125, at 17–18, 21.
166See CODE, supra note 44, at 30, 39 (describing growth of Internet from research tool to

commercial tool).

No. 2] OPEN-SOURCE SOFTWARE 619

amplifying it.167 Products such as Linux would not have grown as they have
without commercial entities to facilitate delivery of the open-source software
to organizations that wish to deploy it without aggregating it themselves.

Commercial mainstreaming points back to the open-source license—a
conditioned permission to use, modify, and distribute the software along with
the source code.168 The conditions are unique in many ways when compared to
traditional software licensing. Large scale commercial use of open-source
software puts greater scrutiny on the various open-source licenses and on the
open-source approach in general. I have sketched the open-source approach in
a prior Section, but a more detailed look is necessary for the rest of my
argument. Thus, the next Section reviews the key attributes of open-source
software licenses, contrasting the differences between some of the more
prominent licenses.

167As a prominent computer company, IBM’s embrace of Linux has engendered a lawsuit

by a small software company allegedly holding certain rights to a flavor of Unix, called AIX,
that IBM has licensed, developed, and distributed for many years. Steve Lohr, No Concession
From I.B.M. In Linux Fight, N.Y. TIMES, June 14, 2003, at C1 (“The case, regardless of its
outcome, also points to a broader issue that will not go away: how to manage the meeting of two
worlds of programming.”). The plaintiff’s claim is that IBM has transposed plaintiff-owned AIX
software into Linux. Id. The suit has generated much commentary in the open-source community
because IBM’s embrace of Linux was a major benefit for Linux. Id. See John C. Dvorak, Killing
Linux; Linux and the whole open-source movement are in peril, PC MAG., June 1, 2003, §§ 1–3,
available at 2003 WL 5729467 (arguing that open-source community is not taking suit seriously
enough, nor addressing underlying risk of open-source programming—contributor who,
unbeknownst to rest of group, injects protected code into project). See also Eben Moglen,
Enforcing the GPL I, § 6 (2001), at http://emoglen.law.columbia.edu/publications/lu-12.html
(last visited June 26, 2003) (discussing how GPL licenses open-source software); Eben Moglen,
Enforcing the GPL II, §§ 2–6 (2001), at http://emoglen.law.columbia.edu/publications/lu-
13.html (last visited June 26, 2003) (discussing enforcement efforts for open-source software
under GPL).

168My earlier review of Linux and Apache described two ends of a licensing continuum.
Comparatively, Linux’s GPL puts a great deal of “control” over users and redistributors, but it is
control in the sense of ensuring openness. On the other hand, the Apache license very minimally
restricts the software. Redistributors are free to distribute only object code and charge royalties,
so long as certain attributions and notices are given. An expanding number of open-source
licenses sit somewhere in between these continuum boundaries. Because licenses have
proliferated, leaders in the open-source movement established the Open Source Definition
(“OSD”). Raymond, supra note 125, § 8 (“[T]he Open Source Definition . . . was written to
express the consensus of the hacker community regarding the critical features of the standard
licenses”). See Open Source Initiative, at http://www.opensource.org/ (last visited June 4,
2003) (“Open Source Initiative (OSI) is a non-profit corporation dedicated to managing and
promoting the Open Source Definition for the good of the community, specifically through the
OSI Certified Open Source Software certification mark and program.”). The OSD is a set of
guidelines. OSI evaluates licenses against the guidelines to determine whether a license meets
the OSD, publishing the evaluations on its Web site. See The Approved Licenses, at
http://opensource.org/licenses/index.html (last visited June 4, 2003) (listing many dozen
approved licenses).

620 UTAH LAW REVIEW [2004: 563

B. Open-Source Software Licenses and Collaborative Development

In this Section I focus on open-source software licenses, but the picture

would be incomplete without first relating how the open-source approach has
sprouted in other copyrightable subject matter. Software is a unique type of
copyrightable material due to its dual character: it is both a functional writing
and an expressive work. The functional nature heightens the importance of
access to the source code. Thus, source code availability is a key provision in
open-source software licenses. Non-software copyrightable subject matter can
dispense with this condition in a license to promote sharing. However, the
remaining open-source conditions have inspired their application beyond
software.

1. Open-Source Licenses for Non-Software Subject Matter

Certain undertakings seek to extend the open-source approach to

information generally, or at least to non-software copyrightable material. One
prominent example is the Massachusetts Institute of Technology’s (“MIT”)
Open Course Ware project, which is “open-sourced” under the Creative
Commons.

The MIT project seeks to “[p]rovide free, searchable, access to MIT’s
course materials for educators, students, and self-learners around the world . . .
[in an] efficient, standards-based model that other institutions may emulate to
openly share and publish their own course materials.”169 It does this under a
licensing approach promoted by the Creative Commons, an organization
started by a group of activists, including cyber-law and intellectual property
experts.170 Creative Commons offers “the public a set of copyright licenses free
of charge. These licenses will help people tell the world that their copyrighted
works are free for sharing—but only on certain conditions.”171 Content
producers can select from a menu of possible licenses, each specifying a

169OCW, About OCW, at http://ocw.mit.edu/OcwWeb/Global/AboutOCW/about-ocw.htm
(last visited Feb. 18, 2004).

170Creative Commons, Frequently Asked Questions, at http://creativecommons.org/faq
(last visited June 3, 2003) [hereinafter CC-FAQ]. See generally Thomas F. Cotter,
Prolegomenon to a Memetic Theory of Copyright: Comments on Lawrence Lessig’s The
Creative Commons, 55 FLA. L. REV. 779, 780–85 (2003) (discussing “emerging field known as
memetics” and its implications for copyright law); Molly Shaffer Van Houweling, Cultivating
Open Information Platforms: A Land Trust Model, 1 J. TELECOMM. & HIGH TECH. L. 309, 319–
323 (2002) (analogizing open-source license to land trusts); Maureen Ryan, Cyberspace as
Public Space: A Public Trust Paradigm for Copyright in a Digital World, 79 OR. L. REV. 647,
648 (2000) (suggesting “a public trust paradigm for formulating copyright principles in a digital
world”).

171CC-FAQ, supra note 170. The Creative Commons licenses “do not make mention of
source or object code”; thus the Creative Commons organization recommends that creators
seeking to publish open-source software use an open-source software license. Id.

No. 2] OPEN-SOURCE SOFTWARE 621

different set of conditions for sharing the content. Thus, Creative Commons
provides tools with which individual work-holders can apply an open-source
approach of their choosing to make their work available for sharing. It seeks to
generally enable and apply the open-source approach beyond software.

2. Pre-Open-Source Sharing (Typically) Without Source Code

Creative Commons and examples like it show that the open-source

approach may apply beneficially beyond software. However, this extension
emphasizes the unique condition necessary for open-source software:
availability of the source code. After all, before the open-source approach rose
to prominence, there was an active trade in freeware and shareware software.172
These programs were usually developed and written in a similar vein as
single-programmer open-source software. Hobbyists and tinkering
programmers built interesting or useful software and then offered it, typically
in object code form, to others free of charge, or in the case of shareware, for a
de minimis fee.

The freeware and shareware history demonstrates a sharing tradition
among programmers, in particular for utilities, tools, and components useful to
the tasks of developing software, integrating software and systems, or
operating information technology systems. Writing and sharing these programs
serves some of the same functions for programmers as developing open-source
software serves: it creates an opportunity to experiment and learn; it provides a
solution to a computing problem or preference that has been annoying or
troubling the programmer; it allows the programmer to establish a reputation
by sharing her solution with others; it lets the programmer signal her
characteristics as generous, clever, talented, or skilled with a particular
technology; and it allows the programmer to promote the project as a signal of
her skill, such as by listing the freeware or shareware project on a resume, or

172See, e.g., Int’l Inst. of Infonomics, University of Maastricht & Berlecon Research

GmbH, Free/Libre and Open Source Software: Survey and Study: Part III—Basics of Open
Source Software Markets and Business Models, at 11–12 (2002), at http://www.berlecon.de
/studien/downloads/200207FLOSS_Basics.pdf (last visited June 27, 2003, report overview page
available at http://www.infonomics.nl/FLOSS/report/) [hereinafter FLOSS Basics] (presenting
two-by-two classification scheme for software using axes of source code availability and
royalties, resulting in following four categories: shareware/freeware, commercial open-source
software, noncommercial open-source software, and proprietary/commercial software); Schmidt
& Schnitzer, supra note 149, at 4 (distinguishing open-source software from freeware and
shareware).

622 UTAH LAW REVIEW [2004: 563

bringing a copy to demonstrate at an interview.173 However, what the freeware
and shareware practice generally lacked was collaboration on any meaningful
scale. The open-source approach does not mandate that collaboration, but it
permanently facilitates it. Most open-source software licenses ensure to
varying degrees that during the entire life of the project it is always susceptible
to collaborative energy and input. The next Subsection will discuss how.

173Under the traditional software development model, programmers may be unable to

show any direct work product to potential employers during an interview. This is so because the
prior employers likely extracted a contractual promise that the programmer hold confidential any
software developed and contractually designated the effort as a “work made for hire” under
copyright law. See Cmty. for Creative Non-Violence v. Reid, 490 U.S. 730, 737, 739–41 (1989)
(holding that terms “employee” and “scope of employment” follow common law of agency for
purposes of copyright work for hire doctrine, and noting that “contours of the work for hire
doctrine therefore carry profound significance for freelance creators—including artists, writers,
photographers, designers, composers, and computer programmers . . .”); Rochelle Cooper
Dreyfuss, The Creative Employee and the Copyright Act of 1976, 54 U. CHI. L. REV. 590, 594–
97 (1987) (noting history and importance of work for hire doctrine and discussing factors courts
use to determine whether work is “work made for hire,” thus vesting original copyright
authorship with employer or commissioning entity). Further, if an employed programmer takes a
copy of the source code she developed, this may create a risk of trade secret violation and breach
of the programmer’s employment agreement. Many programmers create software for internal
use by their employers. Raymond, supra note 125, § 6. Such a programmer would perhaps be
unable to show future employers either the source code she has written or her applications as
they function when running, at least without running the risks of unauthorized disclosure. An
alternative for these programmers is to write freeware or shareware. This software is totally
under their control. Thus, the programmer can hold it up as a credential when exploring
opportunities beyond her present employment. An open-source software project would provide
the programmer with similar benefits, enhanced by the possibility that the programmer may be
able to emphasize to potential employers her status and role within the contributing group that is
developing the open-source software.

No. 2] OPEN-SOURCE SOFTWARE 623

3. The Open-Source Approach in a Collaborative Software Project

An open-source software project with multiple contributors over time

generates a web of license permissions that in all likelihood locks the project
into open-source status for its useful life.174 Each contributor to an open-source
software project adds subject matter potentially protected by copyright.175 The
result is that for each contributor to use and further modify the software, she
relies on the permission granted in the open-source license by all other
contributors. Recall Allen, Betty, and Carol, and their open-source software,
GoneOutdoors. If only these three contribute, the web of permissions is small.
But assume that over several years, twenty users, who are also programmers,
add significant new functionality and send the changes back to Carol. She
incorporates the changes into GoneOutdoors and regularly republishes the new

174See cf. McGowan, supra note 4, at 259 (“This Web of blocking copyrights suggests that,

as a practical matter, each contributing programmer would have to agree to privatize the code if
it was to be taken private in its most current and complete form.”); id. at 264, n.116 (describing
bars preventing single author from privatizing code). See also Mark A. Lemley, The Economics
of Improvement in Intellectual Property Law, 75 TEX. L. REV. 989, 992–93, 1073–77 (1997)
(arguing that copyright law should change to allow improvements similar to those that occur in
patent law, where improver can own patent rights in new technology even if that technology
infringes preexisting patent). In the open-source approach, the web of blocking copyrights
results from the open-source license. Permission has been granted to the improvers to make
modifications to the software. Typically, most members of the project team will want to use the
latest version of the software incorporating all team members’ changes. As a result, by so using,
they need to rely on the open-source license, which generates the web of copyright permissions.
The situation is further complicated by considering non-developer users. If all contributing
programmers privatize the open-source software, which would allow them to take the software
in a number of traditional directions for licensing and distribution, the group would have to live
with the existing user base’s access to the source code. Under most open-source licenses, these
users would have the permission to continue to develop the software. They would have no right
to the privatizing group’s future changes and resulting (presumably better) versions; but they
could continue an open-source vein of the software.

175As a literary work with “thin” copyright protection, not all elements of the source code
are protectable. Menell, supra note 2, at 65–66 (“Copyright law provides a thin layer of
protection for computer software, effectively prohibiting wholesale piracy of computer programs
without affording control for interface specifications and other essential elements of computer
functionality.”).

624 UTAH LAW REVIEW [2004: 563

version on her Web site. Allen, Betty, and Carol have, in effect, allowed
twenty others to join them as co-contributors176 to GoneOutdoors.

As the developing group grows in a project with multiple versions over
time, so grows the interdependence of license permissions. This is in part
because the latest version is typically the most desired version of the software.
Assuming that the software has added features and functionality, the latest
version most likely has contributions from the largest group.177 Alternatively,
although it is possible that later versions could excise all of the code
contributed by one or more programmers in favor of new code from a new
group, this is not usually the case when the software obtains increased
capability with each version.

The interdependent web of license permissions resulting from the open-
source approach defines only a bare minimum in “ground rules” for open-
source software development.178 Compared to traditional software
development processes, much is left unspecified. It is not the purpose of open-
source software licenses to specify the pragmatic details about how the
contributors will coordinate their collaboration; but the collaboration would be
perhaps impossible, or at least exposed and vulnerable, without the open-
source approach. The group relies on both the norms the open-source license
enforce and the traditions it expresses.

Whether collaboration occurs, and its effectiveness, depends on factors
that define the software development process. These characteristics are best

176By designating the programmers as co-contributors, I consciously sidestep the question

of whether the co-contributors are joint authors in the copyright sense, or whether the resulting
product is a joint work. See NIMMER & NIMMER, supra note 55, § 6.03 (discussing elements of
joint authorship and distinction between joint authors and joint work). While a determination of
joint ownership among the contributors to an open-source project would upset the open-source
licensing scheme, this risk explains in part the need for a license that asserts ownership in the
original author for her contribution, and then grants conditional rights to others.

Nimmer also contrasts joint authorship with its alternatives, derivative works and
collective works:

[I]n the case of both a derivative work, and a collective work, the contributing author
owns only his own contribution, while in the case of a joint work each contributing
author owns an undivided interest in the combination of contributions. What, then,
distinguishes a derivative work from a joint work based upon inseparable parts?
What distinguishes a collective work from a joint work based upon interdependent
parts? The distinction lies in the intent of each contributing author at the time his
contribution is written. If his work is written “with the intention that [his]
contribution . . . be merged into inseparable or interdependent parts of a unitary
whole” then the merger of his contribution with that of others creates a joint work. If
such intention occurs only after the work has been written, then the merger results in
a derivative or collective work.

Id. § 6.04 (citations omitted).
177Raymond, supra note 125, §§ 5, 11.
178Bruce Kogut & Anca Metiu, Open Source Software Development and Distributed

Information, 17 OXFORD REV. OF ECON. POL’Y 2, 248, 257 (2001).

No. 2] OPEN-SOURCE SOFTWARE 625

understood in two contexts: first, by their manifestation in traditional software
development, and second, in open-source software development.

(a) Traditional Coordination of Team-Developed Software

Traditional software development is command and control, sometimes to

a severe degree. Its characteristics are resource measurement, progress
tracking, product and customer requirements, work hierarchy, code
partitioning, and a variety of technological and practical constraints on the
implementation options available to a programmer in the project.179 All these
characteristics are in the forefront of team-developed software.

For example, programmers in traditional software development teams
may find themselves forced to work with old technology by their employers.180
The interests of the programmers and the company diverge because the costs to
convert the software do not exceed the gain to the company of doing so.181 This
outcome results because the command-and-control hierarchy of traditional
software development is often styled after traditional industrial production
methods.182 This approach is in part a response to the corporate need to
predictably guarantee and generate outputs when expending production inputs.

However, the history of traditional software development shows that the
industrial production method to produce software has limits. Software design
and programming are a unique mix of science, engineering, and practitioner
art. One example of this mix manifests in a dramatic degree of variability

179For a discussion of the traditional software development process to develop and

formalize project requirements, see Walt Scacchi, Understanding the Requirements for
Developing Open Source Software Systems, 2, 7–8 (Dec. 2001), available at http://www.ics.uci.
edu/~wscacchi/Papers/New/Understanding-OS-Requirements.pdf (last visited June 13, 2003)
(“The focus in this paper is directed at understanding the requirements for open software
development efforts, and how the development of these requirements differs from those
traditional to software engineering and requirements engineering”).

180The programmers may work on a software product that is mature, yet has a large user
base demanding some new functionality. If the product is written with an “old” programming
language, it may not be worth the company’s investment to convert (reprogram) the software to
a modern language, even if the programmers prefer this to update their skills.

181This cost benefit analysis may or may not hold true, and is determined in part by the
management philosophy of the company in how it measures short-term versus long-term gains.
Converting the software may not generate a positive return for the life of the project, meaning
that the up-front cost is greater than the present value increase in rents the company will obtain
from the conversion, taking into account increased revenues, cost structure changes, and post-
conversion profit levels. If the intra-project costs exceed the benefits, alternative extra-project
justifications for converting would include the training effect on the programming team,
increasing their value for future projects on different software, and increasing the likelihood of
retaining them as employees. It is common for programmers to switch jobs in order to get on a
project that allows them to upgrade their skills.

182See, e.g., Raymond, supra note 125, § 3 (“[S]oftware is largely a service industry
operating under the persistent but unfounded delusion that it is a manufacturing industry.”).

626 UTAH LAW REVIEW [2004: 563

among programmer output. Even measuring this output is fraught with
uncertainty. Another example is that despite a history attempting to apply
various methods to improve software quality, defect rates are generally
perceived as too high and beyond the rates found in other industries.

The management hierarchy in traditional software development provides
control and coordination. Larger projects require subdivisions among both the
programming teams and the source code.183 Thus, the source code itself reflects
the nature of the hierarchy.184 Traditional organizational lines of control are
common. Small groups program components of the software. Each group has a
supervisor, all of whom may report to the project leader. Often design,
programming, and testing are separate functions with specialized or only
marginally integrated groups performing each function.185

The sketch I have drawn of the traditional software development process
is by definition a stereotype—specific programming projects exhibit more or
less of these characteristics. By my sketch I do not mean to imply that the
traditional methods are obsolete. And the differences between the traditional
methods and the open-source development process are ones of degree.186 In
terms of coordination and control among the contributing team, open-source
software is innovative, but there is debate as to whether it is truly a new
paradigm for software development.

183Kogut, supra note 178, at 258–59.
184In many aspects of the software development process, open-source or otherwise,

software tools enable and support development. One commonly used tool is a source code
control system (“SCCS”). A variety of SCCS software products are available. They typically
provide the following capabilities: (1) SCCS systems store all the source code in a common
repository and programmers access the code through the SCCS; (2) programmers “check-out”
the code from the SCCS to work on it, and when finished, “check-in” the code; (3) the SCCS
tracks the changes made by individual programmers; (4) the SCCS manages versioning of the
software, allowing programmers to work on specific versions, and in some cases the SCCS
propagates changes across versions when appropriate; (5) the SCCS provides automated
compilation of multiple source code components into a finished “build” of the product; and (6)
the SCCS provides reports and other tracking tools for all of its capabilities. Part of the design of
a large software project is to determine granularity in subdividing the source code into
components, such as specific files, or, in more modern programming languages, objects or object
classes. The SCCS is a key facilitating tool to implement and manage the organizationally
imposed coordination necessary in a large, multi-contributor software project.

185See Paul Vixie, Software Engineering, in OPENSOURCES, supra note 2, at 93–96
(describing integration and testing process in software engineering).

186See generally id. at 96–100 (describing open software engineering process). Indeed,
some open-source software development techniques are working their way into the corporate
development setting. See Jamie Dinkelacker & Pankaj K. Garg, Corporate Source: Applying
Open Source Concepts to a Corporate Environment, Position Paper 2 (2001), available at
http://www.hpl.hp.com/techreports/2001/HPL-2001-135.pdf (describing application of “Open
Source concepts, perspectives and methodologies within the corporate environment,” including
its debugging success, “best summed up by Eric Raymond: ‘given enough eyeballs, all bugs are
shallow’”).

No. 2] OPEN-SOURCE SOFTWARE 627

(b) Coordination of Open-Source Collaboration

In large, multi-contributor projects, open-source programmers must, and

do, collaborate, but by means different in degree than traditional software
development. Organizationally, the means are informal rather then formal.
Most of the controlling structures of traditional software development are
relaxed to a degree where they are no longer conspicuous. Technologically,
however, tools similar to those used in traditional software development are
employed to partition, segment, and manage contributors’ inputs to the
project.187

The key differentiating characteristics of open-source software
development are: (1) self-identification for roles and tasks; (2) geographically
disperse development groups; and (3) partial merger of the sometimes
traditionally separate design, programming, and support functions.
Self-identification is inherent in open-source development. The programmer
who initially starts a collaborative project (as opposed to a sole effort) is often
self-identifying to act as the leader or facilitator of the project, at least initially.
Programmers who volunteer to contribute to the project typically identify the
improvements they would like to program, or at least identify an area or aspect
of the software in which they would like to work and for which they are well
suited.188 This approach is rational because, among the many possible
motivations that drive programmers to contribute to a project, one of the most
commonly recognized is the desire to establish or enhance their reputation.189

187The most popular SCCS used for open-source software projects is called the Concurrent

Versions System (“CVS”). See Online Chapters from KARL FOGEL, OPEN SOURCE DEVELOPMENT
WITH CVS, at http://cvsbook.red-bean.com/cvsbook.html (last visited June 26, 2003) (providing
“a set of free, online chapters about using CVS (Concurrent Versions System) for collaboration
and version control”). CVS is an open-source software product. Concurrent Versions System:
The open standard for version control, at http://www.cvshome.org/ (last visited June 26, 2003).
See also von Hippel, supra note 123, at 219 (“CVS is an important software tool used by many
open-source projects.”).

188Commentators have posited that self-identifying for tasks in the open-source project is
an important reason why the open-source approach purportedly has produced higher quality
software. The thesis rests on the nature of software development—it is often as much art as
science because creativity is required to solve many computing problems. Another condition of
this thesis is that managing human capital for creative endeavors such as programming is
difficult, because it is inherently difficult to match the task’s requirements with the
programmer’s creative strengths. Under the assumption that programmers self-identify to
program solutions in areas where they are creatively strong and skilled, self-identification solves
this matching problem. See Benkler, supra note 4, at 375–76, 381, 399 (describing advantages
and implications of self-identification).

189Eric S. Raymond discusses several aspects of reputation-enhancing behavior,
contrasting reputational gains for the prospects of economic reward with reputational gains for
social status within the open-source “hacker” gift culture. Eric S. Raymond, Homesteading the
Noosphere, § 2 (ver. 3.0, 2000), at http://catb.org/~esr/writings/homesteading/homesteading
(XTML version, last visited Feb. 17, 2004).

628 UTAH LAW REVIEW [2004: 563

Self-identification also may explain, at least in part, the success open-
source developers have achieved in coordinating projects remotely through
electronic communications. When programmers self-match their strengths and
skills to an aspect of the project, they are less likely to need input and direction
from other members of the group. By successfully volunteering and
contributing in the first place, the contributor is signaling familiarity with the
application’s technology and the source code in which it is implemented, as
well as the capability to communicate in the project’s technological lexicon.
This relates to and supports the second characteristic of collaborative open-
source software: geographically disperse development groups.190

The third characteristic of many collaborative open-source projects, in
contrast to much traditional software, is the partial merger of design,
programming, and support. This occurs because collaborative open-source
projects typically have a “core” group of contributors and a secondary group
with lesser-scope involvement.191 Often the core group contributes a
supermajority of the code while the secondary group’s contributions are less
significant both in volume and importance.192 This same core group, however,
has typically made the critical internal and external design decisions. External
design questions arise from identifying and characterizing the user
requirements of the software. Internal design questions relate to evaluating and
choosing among options to implement the external user requirements. The two
are interrelated. For open-source software, which traditionally has had
sophisticated technologists as end users, the contributors are typically users.
This conjunction inherently merges the design and programming process.

Support merges as well into many collaborative open-source projects
because, except in rare cases such as the Linux aggregator-distributor, who
provides support, the programming contributors typically respond to user
queries and bug submittals. This differs from traditional software where there
is usually a separate group that interfaces between the end users and the
programming team. This is thought to promote a better distribution of
resources by specializing the respective functions. Open-source software, by its
very nature, lacks the capacity to establish a formal customer support group, so
this function is informally distributed among the programmers.193 Open-source
programmers find this less onerous than their traditional counterparts might
because the users submitting questions and bugs are typically sophisticated
technologists and thus, normally, the submittals are, in a sense, additional

190Scacchi, supra note 179, at 3.
191Mockus et al., supra note 4, at 323–24, 339–41, 344 (“[M]embers must be persistent

and very capable to achieve core status.”).
192See, e.g., von Hippel, supra note 123, at 211 (noting that core group of only eight users

generated the initial version of collaborative software that would grow to become Apache).
193Mockus et al., supra note 4, at 322 (“[P]articipation of the wider development

community is more significant in defect repair than in the development of new functionality.”).

No. 2] OPEN-SOURCE SOFTWARE 629

contributions that improve the software.194 In addition, open-source software
users typically have another resource when they need input and guidance:
skilled users who are willing to help answer other users’ questions.195 This has
the effect of supplementing the programming group’s provision of support
while facilitating the growth of the open-source software product, which
indirectly benefits all users by extending the network economies of the
product.

While these three characteristics—task self-identification, geographic
diversity, and merger of functions—differentiate open-source software
collaborative development from traditional team-based software development,
the animating force is that open-source programmers are motivated to
collaborate with an intensity beyond what is present in the traditional
environment. Commentators and open-source programmers alike have
discussed a variety of hypotheses as to what motivates participants in open-
source software projects. The motivation questions arise for both the individual
programmer who volunteers time during evenings and weekends, as well as for

194The form of the communications may also make a difference. Traditional software

support groups typically have obligations to interact with users via telephone calls and perhaps
even through site visits. Some traditional software companies offer “Internet-only” support via
email, discussions lists, Web sites, and similar technologies. However, these mechanisms are
usually the only venue for open-source software support (again, exempting the case of Linux
aggregator-distributor companies such as Red Hat). See Eric von Hippel, Horizontal Innovation
Networks—by and for users 5 (MIT Sloan School of Management, Working Paper No. 4366-02,
June 2002), available at http://web.mit.edu/evhippel/www/UserNetworksWP.pdf (last visited
Nov. 27, 2002) (“Most users of open-source software simply ‘use the code,’ relying on
interested volunteers to write new code, debug others’ code, answer requests for help posted on
Internet help sites, and help coordinate the project.”).

195User to user support is an interesting sidelight to the provision of design, programming,
and support in an open-source software project. See Karim R. Lakhani & Eric von Hippel, How
Open Source Software Works: “Free” Under User-To-User Assistance? 4 (MIT Sloan School of
Management, Working Paper No. 4117-00, May 2000), available at http://papers.ssrn.com/
sol3/papers.cfm?abstract_id=290305 (last visited June 14, 2003) (discussing theories why “some
product users voluntarily provide answers to the questions of other users . . .”). See also id. at
34–35 (discussing general implications for user-to-user innovation systems).

630 UTAH LAW REVIEW [2004: 563

an entity that authorizes employees to contribute during working hours.196 An
intermediate position for companies is to tolerate employees who contribute
during off-hours.197 Most of the motivational theories support the implication
that if programmers volunteer to contribute to the project, they will collaborate
well. To obtain the benefits of volunteering, they must facilitate and enable
their part of the collaboration.

Although categorization could occur along many lines, I divide the
motivational theories for volunteering programmers into the following rough
categories: (1) reputation-based theories; (2) career-planning-based theories;
(3) rebellion or antiestablishment theories; (4) learning-based theories; and
(5) narrow-utilitarian theories, meaning that the programmer is working
directly for the benefit of having and using the software or improved
software.198 An example of the first is an account of the open-source
community as a gift culture, where programmers value sharing and developing

196Entities that pay employees to contribute to open-source software may do so under

several models. The first model is institutional philanthropy of some sort. The second model is a
complementary goods and services business model. Examples include IBM’s contributions to
Linux, and perhaps Netscape’s dedication of its browser code to establish the Mozilla project.
See Mozilla Org., supra note 146 (explaining purpose and workings of Mozilla). The latter
example may be philanthropic in part, but also had commercial motives—Netscape dedicated
the Mozilla code at a time when it was fighting a (losing) battle with Microsoft’s Internet
Explorer browser. Also, a third explanation probably present in the Mozilla dedication is
marketing and corporate image building. Finally, research institutions and governmental entities
may pay programmers to develop software that is later dedicated to open-source status. This is a
point of controversy. See Hahn, supra note 9, at 10 (noting differing views on government’s
funding for GPL-licensed research). Some argue that federally funded research should aim to
develop job-creating commercially viable technology. The argument is that open-source
software underutilizes research funds because it will not support a profit-making startup or other
commercial endeavor, at least not directly or in the vein of the traditional university technology
spin-off company. Evans, Preferring OSS, supra note 129, at 43, 46–47.

197A technology employer might have a competitive disadvantage if it enacted a policy
prohibiting its employees from contributing to open-source projects, because many contributors
use the open-source project to create a more satisfying mix of programming activity. The
employer’s power to do so is in part indirect, resting in the various promises contained in the
typical high-technology employment agreement. When the employee promises to keep trade
secrets and respect the employer’s intellectual property, this can create a tension when the
employee also contributes to open-source projects in the same or neighboring areas. The
opposite effect, however, is possible, where instead of producing tension, a company’s open-
source policy endears employees. Some technology employers promote that they encourage their
employees to contribute to open-source software. A similar effect exists in the law firm labor
market for new attorneys where claims of strong pro bono programs are generally perceived as a
positive attribute for the employing law firm.

198See Raymond, supra note 189, § 2 (describing various attitudes toward open-source
software that approximate given categories). While my last category rings of classic economic
motivations, other categories in the list could be analyzed from a broad utilitarian or economic
framework.

No. 2] OPEN-SOURCE SOFTWARE 631

a reputation for sharing.199 In this account, this reputation is obtained not so
much for its value to future career opportunities, but because it provides the
programmer esteem in the community. An example of the second is an account
of open-source software participation for career concerns.200 Here, the
programmer participates in order to develop skills and knowledge that reflect
positively to future employees. Microsoft abhorrence is an example of the
third. Many open-source programmers and leaders in the various circles of the
open-source community posit that the movement’s energizing,
volunteer-capturing force is a fighting response against the power and control
of proprietary, traditional software.201 The fourth classification is
self-explanatory: programmers develop open-source software as an alternative
to other forms of skills training or professional or intellectual enlargement.202
Similarly, the fifth category identifies situations where programmers directly
want the benefit of the new code they program.203

Putting aside a sole-programmer open-source project where collaboration
is not relevant, these motivational categories all suggest that contributing
programmers will collaborate well. To accrue reputational or career-planning
benefits, it helps the programmers if others perceive their work as timely,
thorough, terse, and in tune with the project. If the open-source software is to
achieve antiestablishment goals and provide an immediately useful output, it
must perform well, be a good fit for the application or problem, and attract a
user base. If the programmer’s goal is self-education, perhaps as a “junior”
contributor, collaborating well is essential to partake in learning-benefits from
the project. Under all of these motivating forces, contributing programmers

199Id. § 6 (“In gift cultures, social status is determined not by what you control but by what

you give away.”).
200See, e.g., Lerner & Tirole, Simple Economics, supra note 88, at 3 (noting that “labor

economics” and “career concerns” can “explain many features of open-source projects”).
201See generally Steven Weber, The Political Economy of Open Source Software (BRIE

Working Paper No. 140, June 2000), available at http://e-conomy.berkeley.edu/publications/
wp/wp140.pdf (last visited June 15, 2003) (describing generally politics of open-source
software).

202See von Hippel, supra note 123, at 211 (“Today, an open-source software development
project is typically initiated by an individual or a small group with an idea for something
interesting they themselves want for an intellectual or personal or business reason.”).

203Justin Pappas Johnson, Economics of Open Source Software, § 9 (2001), available at
http://opensource.mit.edu/papers/johnsonopensource.pdf (last visited Nov. 27, 2002).

632 UTAH LAW REVIEW [2004: 563

could be expected to communicate among the group in ways that facilitate
collaborative effort.204

This Section began with the proposition that the open-source approach
established foundation expectations and norms to facilitate collaboration.
It protected the project from opportunists who would co-opt it. But the
approach did not specify the means to coordinate the collaboration. Other
motivational and technological factors provide the means. The motivations
contrast with those of traditional team software development, but the
coordinating technology in open-source development builds on traditional
methods with the newfound connectivity and bandwidth of the Internet. While
the open-source licensing approach primarily sets the stage and protects it from
pillage, some of its provisions also influence the coordinating means.205 The
next Subsection elaborates on both roles.

4. Open-Source Licenses and Their Impact on Collaboration

Without the open-source approach, or some other agreement or

controlling force among the programmers, the group risks opportunistic
behavior by a subset that would appropriate the software for its own
purposes.206 Limiting this collaboration-defeating strategic behavior is a
fundamental purpose of the open-source software license. Indeed, such a limit
is inherent in the philosophy underlying open-source software—that sharing is
the modus operandi. Thus, the open-source license establishes an eco-culture
for collaboration. Using a different metaphor, part of the “bargain”
individually volunteering open-source programmers expect when contributing
to a project is that no one will privatize the project for his or her personal
gain.207 Because software is non-rivalrous and the costs to copy it are small

204While the motivations for open-source developers may be substantially, or drastically,

different from that of traditional software development team members, the means of
communication and coordination are technologically similar. Electronic communications,
primarily email, listserves, and similar mechanisms, provide transparency and a shared
community history. As in traditional development, SCCS software provides technological
coordination. SCCS partitions the code and enforces modularity as necessary to enable multiple
contributors to coordinate changes to the source code text without blocking each other or
overwriting each other’s work.

205McGowan, supra note 4, at 245 (“The licenses that enforce the property rights on which
this structure rests are important to its success. The licenses provide a mechanism for enforcing
norms, for distinguishing the open-source community from conventional software production
and, in some cases, for providing incentives to programmers who require them.”).

206See, e.g., Lerner & Tirole, Scope of Licensing, supra note 98, at 4–6, 12–13 (discussing
restrictive licenses and “hijacking”); Siobban O’Mahony, Guarding the Commons: How
Community Managed Software Projects Protect their Work, 5–6, 8–10 (2003), available at
http://opensource.mit.edu/papers/rp-omahony.pdf (last visited June 13, 2003).

207See Bessen, supra note 5, at 13 (noting that open-source developers want their work to
benefit the community).

No. 2] OPEN-SOURCE SOFTWARE 633

once one has access to the source code, it has traditionally been viewed as
highly susceptible to appropriation. Thus, the open-source approach, at least
for a license that prohibits royalties, solves two problems. First, it ensures that
the source code is available for collaboration. Second, it removes a
disincentive to contribute to a project: the fear that someone undeserving will
co-opt the benefit of the group’s efforts. This not only facilitates volunteerism,
but it facilitates collaboration because group members do not have to police
each other to the same degree. They all know that the license binds them to a
common course, which reduces interpersonal tension and promotes a sense of
mission that traditional software development may find enviable.208

(a) Diverging License Terms in Open-Source Software

To further see the impact of the open-source approach on collaboration

next requires dissecting the approach. Prominent open-source licenses diverge
on certain terms important to collaboration. These diverging key terms are:
(1) whether redistributors must provide source code; (2) whether redistributors
are allowed to charge royalties for software use; (3) whether, or to what degree
the open-source license terms apply to other associated software; and
(4) whether redistributors must apply the same terms to their licensees. The
two prominent open-source licenses already mentioned diverge on the first two
points. The GPL, used for Linux, requires source code with redistributions and
prohibits royalties, but the Apache license does not.209

The third term, the reach of the open-source license provisions to
associated software, is both a difficult technical and legal issue. Among open-
source software licenses, the GPL embodies maximum extension of its terms
to software associated with software covered by a GPL. The issue is what
“associated” means in this context. Some find the GPL’s reach expansive,
which is why it is sometimes described as “viral” in this regard.210 “Viral” is
not used in the sense of a computer virus, but in the sense that the GPL license
terms seek to “infect” the whole of the software that contains any GPL-

208See Raymond, supra note 189, § 19 (arguing that open-source programmers are more

motivated than their commercial counterparts due to creative nature of software development).
209Bruce Perens, The Open Source Definition, in OPENSOURCES, supra note 2, at 182–83.
See also Lerner & Tirole, Scope of Licensing, supra note 98, at 2–3, 5 (showing relative

restrictiveness of various licenses); see supra notes 142, 144 (elaborating on differences between
Apache license and GPL).

634 UTAH LAW REVIEW [2004: 563

licensed open-source software.211 Taken as the GPL license intends, this
colloquial use of “infect” means simply that the GPL license terms must be
honored for all software in the modified work,212 otherwise the license for the
explicitly GPL-licensed open-source software is violated upon a redistribution
of the software.

In other words, the GPL terms extend to other software combined with the
GPL-licensed software. Rather than call this feature “viral,” I call it the
extension provision of the GPL. It exists due to the technological possibility to
combine software. Software components can be mixed together in different
forms to generate a computer program. The GPL wraps a legal issue around
this technology capability. To better understand the legal issue requires a brief
primer on the technology issue.

Recall that the source code is simply one form of the instructional
composite. A computer program, that is, an instructional composite, directly or
indirectly commands the computer to do something. In this characterization,
the source code contains the indirect commands, while the object code,
compiled from the source code, contains the direct commands. Each is a
different form of the instructional composite. Open-source software can be
combined with other software at either stage. Thus, a source code instructional
composite could contain software under a variety of licenses, as well as public
domain source code.213

For example, in the hypothetical GoneOutdoors open-source software,
assume that Allen, Betty, and Carol are the only contributing developers, and

211The GPL does not use the word “viral” nor “infect,” nor does it seek to apply its terms

to other software that is merely aggregated with the GPL-licensed software. Its language
expressing the “viral” extension provision is as follows:

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it. Thus, it is not the intent of this section to claim
rights or contest your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or collective works based
on the Program.

GNU, GPL, supra note 99, § 2.
212See Margaret Jane Radin, Humans, Computers, and Binding Commitment, 75 IND. L.J.

1125, 1132 (2000) (“A viral contract (or attempted viral contract, because we do not know yet
whether these attempts will result in an actual contract) is simply an attempt to make
commitments run with a digital object.”).

213Kem McClelland, A Practical Guide to Using Open Source Software in a Time of Legal
Uncertainty, UNDERSTANDING ELECTRONIC CONTRACTING 2003 THE IMPACT OF REGULATION,
NEW LAWS & NEW AGREEMENTS 351, 389–96 (Practicing Law Institute Intellectual Property
Course Handbook Series, vol. 743, 2003).

No. 2] OPEN-SOURCE SOFTWARE 635

that they have licensed GoneOutdoors under the GPL. Then Dan takes a copy
of GoneOutdoors’ source code and attaches to it his previously developed
source code for Extreme Outdoor Sports. In effect, Dan mixes together his
source code with Allen, Betty, and Carol’s source code, which utilizes the
GPL. Assume that the mixing causes minimal intermingling. As a result, if
programmers wanted to, they could easily disentangle the two sets of source
code. Next, Dan distributes the new program as open-source software, calling
it GoneExtremeOutdoors. In the distribution, while Dan provides a complete
set of object code, he only provides Allen, Betty, and Carol’s source code. Dan
is at risk of violating the GPL’s extension provision. He has distributed his
modified work “as a whole” but without providing source code for the
whole.214 Dan combined the two sets of software at the source code level. He
had, however, an alternative design choice. He could have modified both sets
of source code to interact, and then combined them after generating object
code separately for each separate source code set. Doing this and then
distributing GoneExtremeOutdoors with only Allen, Betty, and Carol’s source
code would also put Dan at risk of violating the extension provision, even
though the software coupling was less intimate. The risk, however, might be
lower because the coupling was less intimate. Thus, the extension provision
seeks to apply the GPL license to other software combined with the software
covered by the GPL, but only for certain means to combine, without precisely
spelling out which means.215

There are other ways for software components to interact, coordinate,
cooperate, and exchange data and signals as they execute in a computer. In
effect, there is a continuum of possible coupling methods for software
components. This technological fact raises the question: which of these
coupling methods does the extension provision cover? Some of the software
components might be covered by the GPL, others might not. If the
non-GPL-licensed components are sufficiently coupled to the GPL-licensed
software, then the GPL terms attempt to extend themselves to all coupled

214GNU, GPL, supra note 99, § 2.
215See Jianjun Deng et al., Towards a Product Model of Open Source Software in a

Commercial Environment, 3rd Workshop on Open Source Software Engineering, International
Conference on Software Engineering 31, 32 (Feller et al. eds., May 3–11, 2003), available at
http://opensource.ucc.ie/icse2003/ (last visited June 19, 2003) (“[D]ifferent licenses impose
constraints on the development, they even influence the architecture of a software that includes
[open-source] parts as well as closed source parts.”).

636 UTAH LAW REVIEW [2004: 563

components.216 This may or may not cause a violation of the GPL license
terms. First, the non-GPL-licensed software may be licensed under another
open-source license containing provisions that are compatible with the GPL.
Compatible in this sense means that one who complies with the terms of this
other license is also in compliance with the GPL terms. Second, the other
license may directly forbid something the GPL provides, such as the right to
redistribute. In this second example the GPL terms are violated. Third, the
other software may not specify any license conditions, but its source code
might not be made available. This would then violate the GPL, assuming that
the extension provision applies the GPL terms to the other software.217

This example and the foregoing discussion demonstrate variances in
prominent open-source licenses along four issues: source code, royalties,
extension to other software, and mandatory reapplication of the terms to
distributions. How these issues are implemented in the open-source license
influences the collaborative possibilities for the software. These open-source
license provisions, most notably the requirement that source code be made
available, establish an ecology or culture for collaboration.218

Due to these licensing variances, to promote open-source software’s
growth, leaders in the open-source movement established the Open Source
Definition (“OSD”).219 The OSD is a set of guidelines operated by a nonprofit

216One legal mechanism by which a coupled component potentially would need the

permissions of the GPL is when the coupling establishes a derivative work under copyright law.
Wacha, supra note 7, at 22–23. This is a vague and indeterminate boundary because defining
what is and is not a derivative work for associated or intermingled software components is
difficult. If the coupling establishes a derivative work, then the GPL would have the legal power
to require that the coupled component also be licensed under the GPL’s terms. If the coupling
does not establish a derivative work, the situation is less clear and would require additional
analysis based on other factors.

217In practice, for the GPL, industry custom helps define the boundary for the extension
provision. See Torvalds, supra note 116, at 108–09 (noting that what counts as derived work
under GPL can be vague, Torvalds describes that “[w]e ended up deciding (or maybe I ended up
decreeing) that system calls would not be considered to be linking against the kernel. That is,
any program running on top of Linux would not be considered covered by the GPL.”); Wacha,
supra note 7, at 22–23 (“The area open to the broadest interpretation, and the most intense
debate, surrounds when and how proprietary code can coexist with GPL code.”).

218Kogut, supra note 178, at 249–50.
219Id. at 255.

No. 2] OPEN-SOURCE SOFTWARE 637

entity as a certification program.220 While not a license, the OSD guidelines
take positions on the four issues and thus add a third perspective. To illustrate,
the table below aligns the three approaches, Apache,221 OSD, and GPL, for the
four issues.

220See supra note 168 (discussing OSD as guidelines). The definition itself specifies ten

conditions: (1) free redistribution, which must be provided; (2) source code, which must be
available; (3) derived works, which must be allowed; (4) code integrity, relating to a technical
point about attribution for “patched” source code; (5) no discrimination against persons or
groups; (6) no discrimination against fields of endeavor; (7) distribution of license, meaning that
the conditioned permission to use under the license cannot be further conditioned by
redistributors; (8) license must not be specific to a product; (9) the license must not restrict other
software, meaning that it cannot insist that all software merely distributed with it be open-
source; and (10) the license must be technology-neutral, meaning that the license cannot depend
on technology-enabled assent mechanisms such as those found in “click-wrap” agreements. The
Open Source Definition, ver. 1.9 (2003), at http://opensource.org/docs/def_print.php (last visited
June 30, 2003) [hereinafter OSD 1.9]. See also Bruce Perens, The Open Source Definition, in
OPENSOURCES, supra note 2, at 176–80 (analyzing OSD provisions and providing further
commentary on each). OSD 1.9 notes in an annotation to section nine that the GPL meets this
requirement. Id. at § 9. Indeed, the GPL itself acknowledges that mere distribution with other
software does not rise to the level of coupling that would trigger the GPL’s extension provision.
GNU, GPL, supra note 99, § 2 (“[M]ere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.”).

221To give full attribution for the Apache license I acknowledge its lineage. The license
derives from the BSD license. Researchers who developed a free version of the Unix operating
system used the BSD license to distribute the free Berkley Unix. See supra note 144 (stating that
Apache license is derived from BSD license for the BSD flavor of UNIX). The Apache project,
starting with research-institution code, continued this approach. Bruce Perens, The Open Source
Definition, in OPENSOURCES, supra note 2, at 183.

638 UTAH LAW REVIEW [2004: 563

Issue Apache OSD GPL222

source with
redistribution

not required required required

royalties not prohibited prohibited prohibited

extension
provision

implicitly required,
effect is minor

no yes

reapplication
of terms

implicitly required,
effect is minor

must be allowed,
not required

required

Table 1 Key Open-Source Software License Variances

On a continuum, the Apache license is the least restrictive. The GPL has
the most “restrictions,” but they have the effect of insulating the software from
privatization and bringing maximum pressure against withholding source code.

222The Free Software Foundation (“FSF”), as part of its GNU operating system project,

promulgated the GPL, but it also promulgated a less “restrictive” license that sits to the left of
the GPL on the continuum: the GNU Lesser General Public License. Free Software Foundation,
GNU Project, GNU Lesser General Public License, at http://www.gnu.org/copyleft/lesser.html
(last visited June 4, 2003) [hereinafter LGPL]. The introductory remarks to the LGPL note that it
has been renamed. Version 2.0 of the license had the name “Library General Public License,”
but version 2.1 has the current name. The earlier name denotes the license’s original earmarking
for software libraries—components specifically designed to be combined with other software.
The remarks also discuss the primary difference between the GPL and the LPGL: the latter lacks
a strong extension provision.

This license, the GNU Lesser General Public License, applies to certain designated
libraries, and is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those libraries into non-free
programs. When a program is linked with a library, whether statically or using a
shared library, the combination of the two is legally speaking a combined work, a
derivative of the original library. The ordinary General Public License therefore
permits such linking only if the entire combination fits its criteria of freedom. The
Lesser General Public License permits more lax criteria for linking other code with
the library.

LGPL. Thus, the LGPL presumes that certain types of software component coupling, namely
linking with a library, creates a derived work to which license terms would extend. The FSF thus
provides an alternative license, the LGPL, that does not extend the GPL provisions of no
royalties and source code availability to the coupled “whole” although source code for the
software library itself must be made available. The FSF, despite promulgating the LGPL, has
advocated against its use because it believes that that LGPL “does Less to protect the user’s
freedom than the ordinary [GPL]” and finds use of the LGPL justified in only a few special
cases. Id.

No. 2] OPEN-SOURCE SOFTWARE 639

The OSD is in the middle.223 The Apache license is only one page whereas the
GPL is seven pages. The effect of the Apache license’s implicit extension
provision and reapplication provision is minor because the license only
imposes obligations of attribution and notice. Thus, while these obligations
might extend to a much larger work in which the software is incorporated, the
cost of compliance is de minimis. There is no opportunity cost as with the
GPL’s extension provision, where redistributors may lose the chance to
privatize or keep private (charge royalties and keep the source code secret)
other software if they couple the modified or unmodified GPL-licensed
software with other software. Losing the privatization opportunity occurs
through the interaction of the extension provision and the reapplication
provision. The GPL says that, because of the extension provision, the software
with which one has coupled the original GPL-licensed software must now be
under the GPL.224 Once under the GPL, future redistributions must also be
under the GPL.

The OSD guidelines do not require the extension provision and take a
flexible approach to the reapplication of terms provision. An open-source
license is certified as compliant with the definition if the license at least allows
future redistributors to reapply the same terms. They need not do so, but if they
do, they are also compliant. Under this logic, the GPL complies with the OSD.
Thus, the OSD acts as a baseline. A license may require more, as the GPL
does, to promote source code disclosure, but it need not do so to be certified.225

By leaving out dozens of licenses, this discussion understates the degree
of license variance, but it does capture the extremes: the minimal Apache
license and the expansive GPL.226 Given this variety, a natural question is the
impact of license variance on collaboration, especially given that the Apache
project has successfully managed collaborative activity with a minimal license
just as the Linux development, under the GPL, has successfully collaborated.227
The attributes of the collaborative culture will vary due to many factors, but
license differences are reasonably thought to be an influencing factor. Thus,

223The OSD is effectively silent concerning an extension provision. In section nine,

entitled, “License Must Not Restrict Other Software,” the OSD is clear that the license cannot
impose restrictions on co-distributed software. OSD 1.9, supra note 220, § 9. The OSD also
effectively states that the GPL’s extension provision does not render the GPL noncompliant with
section nine of the OSD. Id.

224Wacha, supra note 7, at 22–23 (discussing various technical methods of associating
software that may represent legally significant degrees of coupling).

225See supra note 223 (describing OSD extension provision).
226See Robert W. Gomulkiewicz, De-Bugging Open Source Licenses, 64 U. PITT. L. REV.

75, 82–83, 92–93 (2002) (noting that programmers often choose either GPL or Apache-style
license/BSD-style license, and discussing differences between these two).

227Kogut, supra note 178, at 257 (arguing that under GPL, used by Linux, any
balkanization of code does not become proprietary, whereas, Apache, although it has lesser
strength license, has stronger governance structure and thus has avoided balkanization via its
governance mechanisms).

640 UTAH LAW REVIEW [2004: 563

the next Subsection reviews the effect these licensing differences may have on
collaboration.

(b) Collaborative Implications of Licensing Differences

Among the four licensing issues discussed, source code availability is the

most important collaboration enabler, but it also creates a risk for a feared
anti-collaborative event: forking. An open-source project forks when a group
takes the product in a new direction, establishing its own separate source code
base, and developing the new product apart from its parent.228 Forking is a
possibility as long as the source code is available, which it is under almost all
open-source software licenses.229

The forking possibility is inherent in the open-source approach. For
example, in the hypothetical GoneOutdoors open-source software, assume that
Allen, Betty, and Carol are the only contributing developers, and that they have
licensed GoneOutdoors under the GPL. Then Ed, Fran, and Gill take a copy of
GoneOutdoors’ source code and significantly change and alter the code. But
for some reason they do not want to work with Allen, Betty, and Carol, and
thus do not contribute their changes to GoneOutdoors. Instead, Ed, Fran, and
Gill make their software available from a different Web site, calling it
WentNatural.230 This is completely legitimate under the GPL, although it may
not be optimal or efficient because the aggregate effort for the software is now

228McGowan, supra note 4, at 263, 278 (analogizing forking as one way for one to “take

ownership” of project, and noting that “[n]orms against forking reward conduct that makes
production of code smoother and collectively more efficient and penalize conduct for which
individual returns are likely (on average) to exceed the gains to the code base. Such norms tend
to keep the community’s focus on code rather than individual income.”); see Raymond, supra
note 125, §§ 8, 13 (discussing motivations for individual developers and entities involved with
open source).

229The Apache license is an exception: it does not require that redistributors make the
source code available. Apache License, supra note 141.

230If Ed, Fran, and Gill called their software GoneOutdoors, this creates a more than de
minimis risk of trademark law issues between the two groups.

No. 2] OPEN-SOURCE SOFTWARE 641

split.231 Some in the open-source community see forking as a threat mechanism
that helps discipline a project’s leaders, but actual forking is rare.232 So, while
source code availability and the open-source approach make anti-collaborative
forking a possibility, other factors seem to minimize forking frequency.

For example, open-source licenses that prohibit royalties for the software
may blunt the incentive to fork a project and thus have a pro-collaborative
effect. The OSD explicitly cites this incentive as a reason to require that its
certified licenses prohibit royalties.233 The experience of Unix is evidence for
this point. One of the major flavors of the Unix operating system sourced from
the University of California at Berkley utilized a license similar to the Apache
license.234 In fact, the Apache license is styled from the license used for the
Berkley “flavor” of Unix.235 As a result of the minimally restrictive Berkley
Unix license, many private entities developed their own sub-flavor of the
Berkley Unix, resulting in further fragmentation of the code base, the operating
system, and the brand identity, and inhibiting, as one would expect, inter-entity
collaboration.

In addition to a possible anti-forking effect, an anti-royalty open-source
license provision is also thought to promote contributions to the open-source
software because contributors can be confident that others will not reap what
they have sown, in the sense of extracting private rents for the contributed
work.236 This is a necessary precondition for the large scale collaboration
exhibited by projects such as Linux, and is in essence a codified norm of the

231Whether the hypothetical fork of GoneOutdoors to WentNatural is in fact non-optimal
or inefficient depends on a number of factors. One is whether there are sufficient economies of
scope to warrant combining the functionality of the two software projects. The more that
WentNatural is internally and externally differentiated from GoneOutdoors, the greater
likelihood that it is in fact efficient for it to be a separate project. Another factor is the synergy
within each development group, compared to the synergy that would exist if the two groups
worked together. Additionally, ideological factors could also play a role and cause groups to
believe that they could not work together. A variety of other factors could pertain to the issue,
each expressing the general theme that the payoff from the collaboration under each alternative,
forking or no forking, would influence in fact whether forking occurred. While I have
characterized forking as anti-collaborative, in some of the instances just described forking may
in fact be pro-collaborative because it “right-sizes” through self-selection the group that will
focus on its self-defined open-source software project. See generally Myatt & Wallace, supra
note 89, at 448–49 (modeling collective action problems among developers of open-source
software project and noting interrelationship among project’s size and its level of integration,
i.e., whether it is administered in components or as whole, and programmer coordination).

232See Raymond, supra note 125, § 8 (noting that “forking is frowned upon and considered
a last resort”).

233OSD 1.9, supra note 220, § 1 (“By constraining the license to require free redistribution,
we eliminate the temptation to throw away many long-term gains in order to make a few short-
term sales dollars. If we didn't do this, there would be lots of pressure for cooperators to
defect.”).

234See supra notes 117–118, 144 (giving history of UNIX, BSD, Apache, and GPL).
235Bruce Perens, The Open Source Definition, in OPENSOURCES, supra note 2, at 183.
236See Bessen, supra note 5, at 13 (noting developer’s desire to help community).

642 UTAH LAW REVIEW [2004: 563

open-source community, both for individuals in the community and for entities
that operate there.

The other two license issues, the reapplication provision and the extension
provision, have a less clear collaborative impact. The reapplication provision is
probably collaboratively neutral in the sense that if the license terms are
generally pro-collaborative, then mandatory reapplication should extend the
pro-collaborative effect. If the license terms discourage collaboration, then that
effect also probably carries forward. The extension provision certainly impedes
use of open-source code in proprietary software. Most private software entities
would be unwilling to place an entire program under the GPL merely to obtain
the benefit of using a small amount of GPL-licensed code in the program,
regardless of how efficient or well designed one found the GPL-licensed
code.237 Whether impeding this use of GPL-licensed software is
anti-collaborative or pro-collaborative is probably a matter of perspective.
Projects like Apache or the Berkley Unix provide what is almost a public
domain input for the production process of those who use these projects’ code
in private software. In one sense, this enables collaboration, but the
collaboration runs only in one direction: the open-source software helps the
private entity programmers learn and apply new and better software. The
private entity programmer does not, and is not allowed to, contribute back to
the open-source project.

Many factors beyond these four license issues will influence the degree
and success of collaboration because it is a multi-causal phenomenon. A few of
these are of note because they are linked to the license issues. First is the
incentive of ongoing users and sometimes contributors to eliminate the cost of
keeping keep parallel revisions for their custom modifications when they also
want to partake in future functionality from the project’s later versions.238 Most
open-source licenses allow such users to keep their modification private to

237FLOSS Activities, supra note 152, at 28. (“As firms can protect most of their

intellectual property in the domain of software development, it can be assumed that they only
give as much intellectual property away in the form of Open Source software as is optimal for
them.”) This study goes on to note:

One issue pointed out, for example by Microsoft, is the viral nature of the GPL
(which governs Linux) and especially ambiguities in its vitality, which supposedly
makes it difficult to build commercial software on top of Open Source software.
While a discussion of this legal issue is beyond the scope of this paper, it has to be
taken in account that unclear legal implications might indeed be issues keeping
companies from taking part in those Open Source projects governed by such licenses
or from including such software as infrastructure components into their products.

Id. (citation omitted).
238See supra note 138 and accompanying text (discussing motivation for submitting

changes and avoiding back-fitting costs for new versions).

No. 2] OPEN-SOURCE SOFTWARE 643

their own use,239 but there is an incentive to contribute the modifications to the
project if the cost of maintaining them separately is greater than any
competitive advantage derived from holding them private and, if contributed,
they will be incorporated into the project by its leaders. Second is the practical
necessity for a project initiator or initiating group to develop a critical mass of
code to attract contributors.240 Sufficient framework and vision for the project
must exist to enable programmers to evaluate the opportunity and determine
how they could apply themselves, to their satisfaction, to the project. Third is
to ensure that even though source code is technically available that it is not
obfuscated or hard to obtain.241 For example, open-source licenses that require
attribution for modifications promote commenting or other mechanisms to
record the lineage of the source code. In addition, some licenses specify what
they mean by source code in order to ensure that items necessary to compiling
and assembling the software are made available along with the computer
program instructions themselves.242

The open-source approach provides the foundation for collaboration, but
does not provide the method and means for collaboration. These are both new
and old in open-source software development. Some traditional software
development techniques live on in new forms, such as some degree of
organizing hierarchy, but it is a distributed and informal hierarchy foreign to
traditional software development.243 Truly new is that the source code must be
available, and that royalties are prohibited. These conditions, combined with

239See Miller, supra note 7, at 497–98 (noting that GPL allows modifications to be kept

private unless redistributed).
240George N. Dafermos, Management and Virtual Decentralised Networks: The Linux

Project, 6 FIRST MONDAY No. 11, § 6 (Nov. 2001), available at http://www.firstmonday.dk/
issues/issue6_11/dafermos/ (last visited June 14, 2003) (describing four conditions needed to
mobilize critical mass of resources).

241The Apache license does not require that redistributors make source code available; but,
through its mandatory attribution provisions, it suggests to users where they might find the
original source code from which the programmer built the software. See Apache License, supra
note 141, § 2 (“Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.”).

242See, e.g., GNU, GPL, supra note 99, § 3 (“For an executable work, complete source
code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the executable.”).

243There are other ways to express the contrast between traditional software development
and open-source development. One is the observation Mike Madison made to me that traditional
copyright assumes the traditional development method, while open-source licensing, or
“copyleft,” can dispense with the hierarchy necessary for software development. Open-source
can achieve the same (or better) output with a different organizational structure. See Benkler,
supra note 4, at 378–80 (discussing automated integration and iterative peer productions of
integration as mechanisms that succeed and sustain themselves). If we can dispense with the
traditional hierarchy, then we can and should evaluate whether the legal rights supporting open-
source software development should spring from a new basis.

644 UTAH LAW REVIEW [2004: 563

the rise of the Internet, have enabled collaboration to a degree that has shocked
the information technology world, exemplified by the success of Linux and
Apache. However, the foundation, the open-source approach, for all its
beneficial impact on collaboration, is a mix of the old—copyright law and
licensing law—applied in new ways. The final Subsection of this Part will
briefly examine some of the other legal implications that this new mix raises.

5. Other Legal Considerations for Open-Source Software Licenses

The copyright-based open-source approach communicates a conditional

permission to use the software through an open-source license, which raises a
number of doctrinal questions. In this Subsection I will highlight some of the
issues and their analysis by commentators to demonstrate the degree and range
of questions posed by the nascent open-source approach.

One question is whether the license is also a contract, and if so, whether,
or to what extent it is enforceable.244 The enforceability question should
probably be analyzed on a term-by-term basis for the license under
examination. Commentators regularly state that the most prominent open-
source license, the GPL, has not been tested in court.245 The GPL itself notes
that it is not normally implemented as an agreement that obtains assent from
the user.246 The doctrinal contract questions here are similar to enforceability

244See generally McGowan, supra note 4, at 289–302 (examining open-source approach

and contract law implications).
245Heffan, supra note 5, at 1509; Lee, supra note 131, at 57; McGowan, supra note 4, at

243; Wacha, supra note 7, at 23. While no court cases have yet interpreted the GPL, it has been
at issue in several disputes in which there was some action in the courts, but without generating
an opinion discussing the issues. See Progress Software Corp. v. MYSQL AB, 195 F. Supp. 2d.
328, 329–30 (D. Mass. 2002) (denying injunctive relief on copyright counterclaim because
withheld source code was subsequently disclosed); see also Michael J. Madison, Reconstructing
the Software License, 35 LOY. U. CHI. L.J. 275, 294 (noting open-source model’s lack of testing
in courts); McGowan, supra note 4, at 300–01 (discussing case involving assignment of code
released under GPL).

246GNU, GPL, supra note 99, § 5 (“You are not required to accept this License, since you
have not signed it. However, nothing else grants you permission to modify or distribute the
Program or its derivative works.”).

No. 2] OPEN-SOURCE SOFTWARE 645

questions for shrinkwrap licenses.247 David McGowan notes that the GPL
“seeks to create binding obligations on downstream code through
notice-and-use provisions,” and goes on to analyze several questions this
regime raises from a contract law perspective, while noting that, even if the
contract analysis leaves gaps, the copyright protections still remain.248
McGowan’s emphasis, however, is not to answer these questions, but to raise
them, while focusing elsewhere: “The main point of the GPL is the social
structure it supports—the opportunities it creates, the practices it enables, and
the practices it forbids.”249

The open-source approach raises several doctrinal twists that are new
even compared to shrinkwrap license analysis. McGowan analyzes issues of
formation and assent, whether downstream users are bound or whether issues
of privity hinder this, and questions of term, termination, and assignment.250
Two themes pervade this analysis. First, the possibility that, uniquely for open-
source software, a project might generate a chain of takers or licensees.251
Everyone in the chain is at risk of a copyright infringement suit by the original
programmers and any contributors along the way. In that regard the contract

247Bobko, supra note 13, at 100–03; Lee, supra note 131, at 72–79; McGowan, supra note
4, at 289–96. Beyond shrinkwrap licenses, their cousin, clickwrap licenses, with the benefit of
the user’s positive indication of assent to the terms, are another possible comparison point for
open-source licenses. However, open-source software is not as inclined as private software or
Web sites to present users with an opportunity to affirm terms of the license. See OSD 1.9, supra
note 220, § 10 (requiring that “[n]o provision of the license may be predicated on any individual
technology or style of interface” because section ten is “specifically aimed at licenses which
require an explicit gesture of assent in order to establish a contract between licensor and
licensee. Provisions mandating so-called ‘click-wrap’ may conflict with important methods of
software distribution . . . ; such provisions may also hinder code re-use.”). The GPL was written
in 1991, before clickwrap practices were prominently used. As a result, the GPL relies on the
more traditional, shrinkwrap style “notice-plus-conduct model.” McGowan, supra note 4, at 289.
For a more expansive discussion of shrinkwrap and clickwrap agreements and their implications
for the digital era, see Michael J. Madison, Legal-Ware: Contract and Copyright in the Digital
Age, 67 FORDHAM L. REV. 1025, 1034–48, 1054–76 (1998).

248McGowan, supra note 4, at 289 (“If the GPL is ineffective, the copyright still
persists.”). See also David McGowan, Legal Aspects of Free and Open Source Software, 10–14
(Feb. 2004), at http://www.law.umn.edu/uploads/253/McGowanD-OpenSource.rtf (discussing
possibility of contract formation and other issues, such as term of agreement, using GPL as
paradigmatic example of open-source software license).

249McGowan, supra note 4, at 302.
250Id. at 289–302.
251The chain is only one possible distribution pathway, and perhaps not the most common.

The more common pathway for active projects with a user base is a web of distribution, with
some modifications coming back to a centralized repository to be incorporated into the “official”
distribution of the project. Recall the GoneOutdoors software project of Allen, Betty, and Carol,
where Carol posted the code on a Web site and the group of developers swelled as others joined
the project. See supra Figure 2 and accompanying text (showing interdependence of individuals
of open-source software). As each contributor took a copy of new versions, they used a work,
some of which was their copyrighted material. The rest was copyrighted to the other
contributors. In this configuration, all were now interdependent on the open-source approach.

646 UTAH LAW REVIEW [2004: 563

analysis is not the primary concern. However, the doctrinal contract analysis
demonstrates that contract law may bear on the situation,252 or at least
demonstrates that traditional contract recourse may not be available to a
licensee or taker in this chain.253 Second, the analysis shows that the issues
raised by the open-source approach establish just enough novelty to create
uncertainty. For example, McGowan’s discussion of assignments suggests one
way to manage the uncertainty that results from the distributed ownership
produced by the open-source approach:

One way to combat opportunism is to ask authors of open-source
code to assign their rights to an organization controlled by a
representative portion of the community. The organization would
then decide whether to terminate rights or take code private and, if

252As McGowan discusses, one question is whether a user, who is not a contributing

programmer, would have contract recourse if the programming group, who held all copyright
interests in the open-source software, were able to organize an effort to take the code private.
Would this group be able to “revoke” the license to users? If so, would such users have recourse
under contract law? See generally McGowan, supra note 4, at 289–97 (analyzing these questions
from perspective of case law bearing on shrinkwrap license agreements).

253For open-source software users or marginal contributors to a project, the possibility of
no contractual recourse if the project leaders decided to privatize the project is likely a risk that
most are willing to bear, because the norms of the open-source community are diametrically
opposed to such behavior. Moreover, even if there is not a strict contract claim, the law of
remedies might provide recourse.

[S]uppose that an author distributed code under the GPL and members of the
open-source community worked to improve the code by fixing flaws and writing
additional code. Suppose further that, at some point after considerable improvements
have been made, the author claims that the GPL is ineffective to grant enforceable
licenses to create derivative works. If the author attempted to take the improved
version of the code private, equitable theories such as estoppel might provide a
useful backstop in cases where the facts could not support a formal contract theory.

McGowan, supra note 4, at 297.
McGowan also notes that because the agreement term is not specified by the GPL, some

states’ contract law might make the license terminable at will. Id. at 298–99. As a result, “the
potential ability to terminate at will increases the risk of opportunistic behavior by rights
holders.” Id. at 299. Licensees might be better off if no contract is formed so that “community
members could rest on estoppel arguments,” but those who created derivative works before the
attempted license termination should have their rights preserved. Id.

No. 2] OPEN-SOURCE SOFTWARE 647

properly constituted, its decisions might reasonably reflect
community sentiment.254

If an open-source programmer were to assign her copyright ownership to

a supposedly pro-open-source organization and the organization took the open-
source project and made it private, the programmer’s remedy would then
squarely fall within contract law, assuming that the organization promised to
safeguard the software according to the open-source approach.255 Thus, an
assignment of the contributor’s copyright raises a number of intriguing
questions, and McGowan identifies other ways that assignments could
complicate, or be complicated by, the open-source approach.256

Others areas of concern and uncertainty include warranties257 and whether
copyright law preempts the open-source license (when viewed as a contract).258

254Id. at 300. McGowan further notes that the Free Software Foundation advocates the

assignment approach. Id. In discussing the implications of a “complete absence of property in
the software domain” for open-source software, Benkler notes that “copyright permits free
software projects to use licensing to defend themselves from defection.” Benkler, Coase’s
Penguin, supra note 4, at 446. He then makes a point similar to McGowan’s about the possible
value of public mechanisms for preserving open-source software: “The same protection from
defection might be provided by other means as well, such as creating simple public mechanisms
for contributing one's work in a way that makes it unsusceptible to downstream appropriation—a
conservancy of sorts.” Id.

255In this scenario, although the primary remedy would be under the programmer’s
assignment contract with the organization (assuming the contract contained promises to observe
the open-source approach), depending on the situation, the programmer might also have recourse
under beneficial ownership in relation to standing doctrines under copyright law. See NIMMER &
NIMMER, supra note 55, § 12.04[B]–[C] (discussing copyright infringement standing doctrine
and brining suit as beneficial owner).

256See McGowan, supra note 4, at 301–02 & n.283 (discussing reverse-engineered code
that partially disabled filtering software, which was released under GPL license, and then
assigned to plaintiff (and owner of filtering software) as the result of copyright infringement suit
against two original programmers who developed code and released it).

257For example, the GPL requires that warranties be disclaimed.
[F]or each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is
modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not
reflect on the original authors’ reputations.

GNU, GPL, supra note 99, § 1. One commentator, however, has questioned the effectiveness of
this scheme. See Gomulkiewicz, supra note 226, at 86 (“If the GPL is not the contract that
governs a user’s right to run the software, Uniform Commercial Code Article 2’s implied
warranties may apply to the transaction and consequential damages would be available as a
default rule.”).

648 UTAH LAW REVIEW [2004: 563

Thus, an interesting set of issues potentially lurk behind open-source
software licenses such as the GPL. However, equally interesting is the vacuum
of court cases on these subjects. The vacuum is reported to exist in part due to
the success of the Free Software Foundation in mediating disputes.259 This
success is certainly beneficial for the open-source movement, even if it leaves
some curious as to how a court might resolve the issues highlighted above.

The identification of these potentially uncertain issues raises the question:
what is their impact on open-source collaboration? Since there is no empirical
information to apply to the question, one can only predict that to the extent the
uncertainty is perceived, it might make programmers less likely to contribute if
they fear some partial breakdown in the licensing scheme upon which their
efforts are insulated from private appropriation. Certainly some programmers
are aware, to some degree, of the various licenses—they must choose a license
when they initiate a project.260 Thus, there is some recognition that different

Even disclaiming warranties and damages, however, does not fully protect open-source

programmers from claims of implied warranty. The risk is not uniform, since it goes by state
law. Thus, relevant to the issue are revisions to state law as a result of the National Conference
of Commissioners on Uniform State Laws (“NCCUSL”) project which has generated the
Uniform Computer Information Transactions Act (“UCITA”). See NCCUSL Web, at
http://www.nccusl.org/nccusl/ (last visited July 6, 2003) (describing NCCUSL and providing
links to UCITA project). Illustrating the implied warranty issue is Maryland’s adoption of
UCITA but with revisions to account for open-source software: “[n]o implied warranty of
merchantability is given where a product is distributed for free unless the product is distributed
in conjunction with some other sale or lease.” Charles Shafer, Scope of UCITA: Who and What
are Affected?, UNIFORM COMPUTER INFORMATION TRANSACTIONS ACT: A BROAD PERSPECTIVE
325, 248 (Practicing Law Institute Intellectual Property Course Handbook Series, vol. 672,
2001). Later, the NCCUSL UCITA committee recommended “a new section that exempts from
implied warranty rules the transfer of a computer program where no contract fee is charged for
the right to use, copy, modify or distribute the program.” Report of UCITA Standby Committee,
§ 3(F) (2001) (Recommendation 10), available at http://www.nccusl.org/nccusl/UCITA-2001-
comm-fin.htm (last visited Feb. 4, 2002). To the extent the open-source license is enforced under
a contract model, one commentator has noted that another aspect of UCITA may bear on open-
source software, suggesting that a UCITA state would provide heightened background law
support for the license. ROSENBERG, supra note 35, at 239 (“Open Source fans can be happy that
their licenses will now be taken more seriously”).

258Bobko, supra note 13, at 103–05 (arguing that GPL is not preempted by copyright law).
259Webbink, supra note 8, at 683. See also Moglen, Enforcing the GPL I & II, supra note

167 (discussing Professor Moglen’s efforts as counsel to Free Software Foundation to enforce
GPL).

260See generally Lerner & Tirole, Scope of Licensing, supra note 98, at 2–4, 8–20
(exploring “the various considerations that figure into the licensor’s decision of how restrictive a
license to employ” and noting that ambiguities remain about open-source licenses).

No. 2] OPEN-SOURCE SOFTWARE 649

licenses will have different effects, and perhaps even recognition at some level
that different licenses may have differing degrees of efficacy.261

Despite the questions, successful—that is, widely used—licenses, such as
the GPL, cast a long and important shadow, particularly when they
self-perpetuate by including a reapplication provision.262 They establish a
foundation anchoring the open-source community’s practices. They enable and
facilitate distributed software development by ensuring that source code, the
most important form of the computer program’s instructional composite, is
available. This anchoring embodies norms of the open-source community—a
collection of individuals and groups who have generated both a new software
development approach and a new ideology to support the approach. The
ideology allows, and in some corners embraces, commercial activity as long as
the software remains open and free for all to use. Commercial entities have
responded to fill the aggregator and distributor role for the most popular and
foundational open-source software, such as Linux. The grand result is an
expanding system of software production and distribution that provides a
viable model to compete with traditional software development. But it is a
result that depends on, first and foremost, access and availability to the source
code to engender the collaborative effort.

The emphasis on source code leads to the next step in the comparison.
Just as the open-source approach requires the work to be viewable in a
particular way, the copyright tradition in civil law jurisdictions provides rights
that allow for control over the view that a work presents. These rights are
historically strange to our system of copyright. Even as international
harmonization pushes copyright to a common denominator, these rights are
minimally implemented in our system. Thus, the next Part reviews moral rights
of authors and artists in the civil law tradition.

IV. AUTHORS’ AND ARTISTS’ MORAL RIGHTS

Having examined the significance of source code and how it underpins

open-source software, this Part turns its attention to my point of comparison:

261Since commentary on the GPL has been extensive, and, if legal commentary, often

mentions that the GPL has not been “tested” in court, some project initiators might shy away
from such a license with “bad” publicity. Additionally, some guidance has been published on
choice of a license, including the OSD certification efforts, which would counsel one to choose
licenses that meet the definition. See supra notes 168 and 220 (explaining OSD as guidelines to
determine whether license meets OSD).

262See Ryan, supra note 170, at 683 (noting that “shrinkwrap” licenses, and other
mechanisms of control over copyrighted works, transform law governing access to information
in copyrighted works from public law copyright regime to private law regime).

650 UTAH LAW REVIEW [2004: 563

the traditional civil law droit moral, or moral right of attribution263 and
integrity. These two rights exist among other rights in the droit moral set, but
they are the focus because they parallel the open-source approach. They give
authors control over aspects of their work in ways analogous to open-source
software’s governance of source code. The legal scholarship on moral rights is
extensive; I do not review it in full, but rather sample it to set a base for my
comparison.

I proceed in this Part as follows: the first Section generally introduces
moral rights with emphasis on the right of attribution and the right of integrity.
Among the four prominent moral rights, in my comparison, these two are the
most visible in the open-source approach.264 I present a brief review of their
emergence and place within the generalized copyright regime of civil law
systems. Next is a more detailed review of the right of integrity, followed by a
discussion of moral rights in software. Unlike United States copyright law,
some civil law jurisdictions extend limited moral rights protection to software.
The United States is resistant to moral rights generally,265 which translates into
a lack of explicit moral rights for software and other literary works. Other
jurisdictions, having moral rights as a core part of their tradition, extend these
rights to software to varying degrees.266 This is just one distinction among
many demonstrating the ideological and doctrinal differences of moral rights
compared to our copyright tradition.

A. Moral Rights in the Civil Law Tradition

There are four moral rights in the civil law tradition: (1) the right to

publish the work (that is, to determine when it is first divulged); (2) the right to
have the author’s name, and no other name, attributed to the work; (3) the right
to object to impaired integrity of the work (that is, mutilations, modifications,
or distortions of the work detrimental to the author’s or artist’s honor or

263The right of attribution sometimes is referred to as the right of paternity. PHILLIPS ET

AL., supra note 16, at 59.
264While the rights of attribution and integrity are the most visible, the right to publish has

analogs in the open-source approach: one need not distribute one’s modifications to open-source
software to anyone if one does not wish to do so. Users who modify the software can simply use
their changes in isolation. On the other hand, the moral right to sometimes withdraw work on
equitable terms has no analog in the open-source approach. In addition, there is another right
sometimes grouped with the set of moral rights: the droit de suite, or royalty right, which allows
“an author who has sold a painting, sculpture or other object embodying his work to receive a
proportion of the proceeds of any subsequent resale of that item.” PHILLIPS ET AL., supra note 16,
at 56. The royalty right has an exact opposite implementation in the open-source approach—the
open-source license disallows royalties on use of the software.

265Françon, supra note 27, at 75.
266Arthur Fakes, The EEC’s Directive on Software Protection and its Moral Rights

Loophole, 5 SOFTWARE L.J. 531, 546 n.23, 554 n.42, 609–612 (1992).

No. 2] OPEN-SOURCE SOFTWARE 651

reputation); and, most obscurely, (4) the right to withdraw the work in certain
situations on equitable terms.267

These rights to some degree exist apart from the author’s or artist’s
economic copyright rights in the work.268 Thus, a work’s creator could sell the
physical embodiment, transfer away the economic rights in the work, yet retain
moral rights.269 Replaying my example in the Introduction, if a sculptor in
France creates a statue, the sculptor could sell it, then assign away the
economic copyright rights, yet retain moral rights, such as the right of
integrity. Then, if the buyer mutilated the statue by painting it purple, the
sculptor may have legal recourse to remedy the mutilation caused by the
purpling.270 Thus, the right of integrity allows the sculptor to govern the view
that the work presents.

This small example often amazes those first learning about moral rights—
especially if they are steeped in the traditions of common law alienability of
property and preferences for transferability of rights.271 The next Subsection
will describe how in civil law systems this species of protection for creative
and expressive works emerged in separate coexistence with economic rights in
such works.

267Hansmann & Santilli, supra note 17, at 95–96; Treece, supra note 26, at 487–88, 494,

499–500. Artists’ and authors’ moral rights vary by jurisdiction, thus I resort to the Berne
Convention’s provisions when a common expression of the right of attribution and the right of
expression is necessary. See Berne Convention, supra note 28, § 6bis(1) (describing treaty’s
expression of right of attribution and right of integrity). Françon describes the French
implementation of these four rights, calling what I term the right of attribution the right of
authorship, and calling the right of right of integrity the right to respect. See Françon, supra note
27, at 75. The French right to respect is broader than the Berne Convention right of integrity.
Dietz, supra note 28, at 200–01, 203 (calling Convention’s approach “minimalist” compared to
French approach); Sheldon W. Halpern, Of Moral Right and Moral Righteousness, 1 MARQ.
INTELL, PROP. L. REV. 65, 71 (1997) (calling French protection “broader”).

268The separation of moral rights from copyright rights is exemplified by France and
Germany. Germany’s moral rights are thought to follow a unitary or monist theory—it is
minimally “possible to distinguish the limits of each element” and under a unitary approach
moral rights and copyright are seen “as two facets of a single right.” PHILLIPS ET AL., supra note
16, at 16. France, on the other hand, fits the dualist theory, which “recognizes in the author’s
right the elements of two different orders. There is a separation of the author’s right to assert his
creative relationship to his work and his right to put the work to economic use.” Id. Accord
GOLDSTEIN, supra note 20, at ix.

269Ciolino, supra note 26, at 937 (“Moral rights permit the author of a work to protect it
even after the work has been sold to another.”).

270See, e.g., Halpern, supra note 267, at 71 (noting similar example).
271Ciolino, supra note 26, at 937; Netanel, supra note 18, at 356–58 (describing

Anglo-American traditions of property alienability). Moral rights permit “the artist, in effect, to
maintain a continuing negative servitude in his work, analogous to the servitudes that can be
created in real property in both civil-law and common-law systems.” Hansmann & Santilli,
supra note 17, at 101.

652 UTAH LAW REVIEW [2004: 563

1. European Development

To put things in the language of open-source software, and somewhat

oversimplifying, copyright in continental Europe forked beginning around the
time of the French revolution, resulting in a two-pronged system on the
Continent, but not in England.272 One prong envisioned that copyright
protection was pecuniary, under the argument that some exclusive rights must
attach to copyrighted works to create an incentive for their production.273 As
this fork developed, so did a second basis for assigning authors’ rights to
control their works. This second basis underpinned what today manifests itself
as moral rights.274 While there is disagreement as to whether the fork was
partial or full, to what it owes its ideological basis, and whether it is truly
separate from the pecuniary copyright interests,275 it is clear that modern civil

272See., e.g., Ciolino, supra note 26, at 938–39 (“Although droit moral developed in

civil-law jurisdictions, it is a judicially-created doctrine that developed in the wake of the French
Revolution to assure that artists’ rights no longer existed at the pleasure of the sovereign.”)
(citations omitted); Ginsburg, supra note 36, at 991–92, 996 (comparing civil and common law
copyright schemes); Hugh C. Hansen, International Copyright: An Unorthodox Analysis, 29
VAND. J. TRANSNAT’L L. 579, 580 (1996) (“Overall there were two systems: (1) the Anglo-
American so-called ‘economic’ system and (2) the French and Continental ‘author’s rights’
system with its concomitant fascination with ‘moral rights.’”); Peeler, supra note 29, at 436–41,
447–48 (describing succession of French cases where court’s attitude toward literary property
evolved from lower tier or property, chartered by state to encourage production of works, to
higher form or property inherent in creative effort). England did not statutorily implement
author’s moral rights until 1988; it did so in order to join the Berne Convention. PHILLIPS ET AL.,
supra note 16, at 15, 17–18, 58. Peeler describes the schism that developed in French law which
gave rise to moral rights: “[T]hese rights of personality in works of art were not part of France’s
original copyright scheme, nor were they explicitly part of the pre-statute philosophical debate.
Instead, the source of these rights is the nineteenth century French court decisions.” Peeler,
supra note 29, at 454.

273I greatly oversimplify in sketching the development of a schism in continental copyright
resulting in two types of rights—copyright and moral rights. The degree of schism in each
country varies. See GOLDSTEIN, supra note 20, at 8–9, 283–85 (comparing various countries’
recognition and protection for moral rights). Moreover, two theories, monist versus dualist,
competed for the underlying justifications for moral rights, resulting in consequences for
statutory implementation because France adopted a dualist approach whereas Germany’s
approach was monist. Ciolino, supra note 26, at 939–40; PHILLIPS ET AL., supra note 16, at 16;
see also supra note 268 (describing separation of morals rights from copyright rights). Thus, the
moral rights jurisdictions were not themselves uniform, in addition to differing with
non-moral-rights common law jurisdictions.

274See GOLDSTEIN, supra note 20, at 3–4 (describing conventional wisdom that copyright
and author’s rights (moral rights) spring from different justifications: utilitarian for copyright
versus “a matter of right and justice” based on natural rights philosophy for moral rights).

275See, e.g., GOLDSTEIN, supra note 20, at viii–ix, 4 (challenging conventional wisdom of
divided philosophies for copyright and moral rights: “it is not clear that the division was ever
more than symbolic—it surely has little practical or intellectual force today”); Ginsburg, supra
note 36, at 994–95 (“[T]he differences between the U.S. and French copyright systems are
neither as extensive nor as venerable as typically described.”).

No. 2] OPEN-SOURCE SOFTWARE 653

law jurisdictions show the effect of the fork: authors and artists have
additional, non-pecuniary mechanisms for control over their works.276 Political
and social changes initiated this fork. The changes evolved, and, along with
later interpretations of these changes, embody today’s conventional wisdom
for the emergence of author-protecting moral rights.277

The political and social changes initiating moral rights start with the
French Revolution, and, as a result, their early history is a story about events in
France.278 French law provides the strongest expression of moral rights.279 In
association with the French Revolution, the law of France reacted against
censorship by the French Crown with a new copyright code, eliminating the
royal prerogative basis for rights in creative works. Under this new code,
French courts would develop the droit moral to protect the author’s or artist’s
relationship with her work.280 Later, and for many years, French courts evolved
these rights: “Moral rights did not seem to have been in the destiny of French
intellectual property law, but instead the rights resulted from practical
encounters in the courts.”281 Eventually, after extensive judicial development,
the French codified these rights in statutory law in 1957.282 Thus, moral rights
emerged in France along with momentous historical change and developed
from these changes and beyond.283 In varying forms and following the

276See GOLDSTEIN, supra note 20, at 283–84 (discussing generally moral rights). This

becomes less true over time as international and regional harmonization pressures bear on local
copyright systems, causing, for example, England to enact a degree of protection for moral
rights. PHILLIPS ET AL., supra note 16, at 58.

277See GOLDSTEIN, supra note 20, at 9 (reporting that latter-day commentators expanded
Immanuel Kant’s work connecting literary creation to personality of author); Ciolino, supra note
26, at 939–40 (identifying monist theory of moral rights with Kant, but identifying dualist theory
with Georg W.F. Hegel). I do not challenge this conventional story for the emergence of moral
rights.

278See Peeler, supra note 29, at 427 (tracing “the judicial origins of French moral rights”).
279See Halpern, supra note 267, at 72 (noting that France’s implementation of moral rights

are “most expansive”); Ilhyung Lee, Toward An American Moral Rights In Copyright, 58 WASH.
& LEE L. REV. 795, 803 (2001) (“Within the international community, France is the undisputed
champion of authors’ moral rights”).

280See Peeler, supra note 29, at 427 (“[T]he Revolutionary government that enacted the
first law was politically motivated to reject all symbols of the centralized power and absolute
control that the French monarchy had previously exercised over authors and artists.”).

281Id. at 432 (noting that judicial development arose from a legitimate need to determine
the meaning of intellectual property law in nineteenth-century France, but that the development
was colored by the culture’s “growing adoration of creative genius [which] impelled the
judiciary to fashion principles of moral justice as an important tenet of the law of authors’
rights”).

282Id. at 426.
283See generally id. at 449–54 (tracing changes in French law through nineteenth century

and beyond).

654 UTAH LAW REVIEW [2004: 563

emerging trend in France, moral rights also developed in other major civil law
jurisdictions.284

Commentators link moral rights to theories of personality in property.285
That is, the idea that property—the right to exclude something about an item to
some degree—attaches to a physical object or intangible item by a person
imbuing their will, their personality, to that item.286 For example, in the
sculptor example for the right of integrity, the sheer act of creating the statue,
because it is an expression of creative energy manifesting in the object, gives
the sculptor a metaphysical basis to claim moral rights in the work—to have
some measure of control to ensure that the work stays as the sculptor originally
intended.287 By doing so, the sculptor ensures that the work continues to

284Halpern, supra note 267, at 72. Halpern summarizes the variance in moral rights among

civil law jurisdictions as follows:
Within this group of different cultures, there is wide variation in the scope and
duration of moral right. While sharing much, the ambit of protection accorded by
France, Italy, and Germany varies considerably as does that of the many different
signatories to the Berne Convention. The duration of moral right ranges from the
lifetime of the creator to perpetuity; different parts of the bundle are protected, or left
unprotected; interpretation may be broad or narrow. In short, beyond the most
general principles, there is no universal set of moral right constructs applicable even
as among the Civil Law countries.

Id. (citation omitted).
285Kwall, supra note 25, at 7–8 (“[T]he moral right doctrine safeguards rights of

personality rather than pecuniary rights. The creator projects his personality into his work, and
thus is entitled to be free from vexatious or malicious criticism and from unwanted assaults upon
his honor and professional standing.” (citations omitted)).

286Radin, supra note 33, at 959–61 (arguing that “personhood perspective” refers to class
of property arising from individual’s connection to external object such that riddance of object
would occasion felt loss, but contrasting this class of property with external items held purely for
instrumental reasons). Radin notes that such a personhood conception for property requires, to
avoid total subjectivism, some concept of a “person” to calibrate which extensions of a person’s
will to an external object should occasion property rights. Id. at 961–62, 973–74, 977–78, 986.

287Liemer, supra note 17, at 44. Liemer expresses this point as follows:
Moral rights seek to protect the artist’s creative process by protecting the artist’s
control over that process and the finished work of art. If artists feel more secure
about the treatment they as creators and their creations will receive, they are more
likely to create. Recognizing moral rights is one way a society can encourage artists
to create. While moral rights often may aid the financial interests of the artist, their
focus and intent lies elsewhere, in the personal interest of the artist in her work.
Indeed, most countries that recognize moral rights also provide a separate set of
rights, such as copyrights to protect economic interests in the work.

Id. (citations omitted).

No. 2] OPEN-SOURCE SOFTWARE 655

express and embody the sculptor’s personality.288 The world sees and
experiences the sculptor’s personality through the work. Thus, if the work is
mutilated, it can no longer express the artist’s personality. Literally, the right of
integrity prohibits certain types of modifications; but in light of personality
theories of intellectual creation, its deeper meaning comes through: preserving
the view presented by the work, and with it the author’s or artist’s expressed
personality.

The other moral rights also fit the personality theory.289 The author or
artist needs to control the first publication or disclosure of the work in order to
ensure that when the work leaves the author’s domain, it embodies the
personality-view desired.290 Once released, the right of attribution ensures that
the original author or artist retains the degree of association with the work
under which the author released it. This is often done by name, but could also
be under a pseudonym, or be anonymous.291 The right to withdraw the work
upon remuneration also fits the personality theory. If the artist changes the
genre or reworks the image, it may be fitting, from a moral rights perspective,
for the artist to withdraw from circulation works that clash with a prior era in
the artist’s development.292

288Netanel, supra note 18, at 382. Netanel describes the personality basis for moral rights

as follows:
This personal connection has been variously described as one of artistic reputation,
emotional sensibility and dominion of personality In the aggregate, the [moral
rights] serve to enhance the author’s ability to determine at all times whether, when,
in what manner and form, by whom, and in whose name the work will be presented
to the public.

Id.
289Personality theory is not the only explanatory vehicle for moral rights. A

complementary explanation is that moral rights help society protect and preserve its culture.
Authors, artists, and other creators, via their moral rights, assist society to retain works of
heritage. See, e.g., Kwall, supra note 25, at 15–16 (“[F]ocusing on society’s interest in
preserving its cultural heritage, when a creator’s work is altered after his death, society is the
ultimate victim for it can no longer benefit from the creator’s original contribution.”); but see
Cotter, supra note 17, at 74 (arguing that “endowing the artist with a moral right is a rather
awkward method for protecting the public interest in the preservation of art”). Another
explanation is that moral rights allow authors and artists to protect their reputation and
livelihood. Id. at 69–70 (discussing reputation); Hansmann & Santilli, supra note 17, at 104–05
(discussing artists’ pecuniary interests).

290Liemer, supra note 17, at 52–54 (arguing that right of disclosure “protects the unique
relationship in the arts between person, process, and product” by ensuring that others see work
only when authors or artists are ready—when they know that creation process is complete).

291Hansmann & Santilli, supra note 17, at 130–34.
292Cf. Liemer, supra note 17, at 54–55 (“Arguably, the moral right most difficult for many

Americans to fathom is the right of withdrawal.”); Hansmann & Santilli, supra note 17, at 139–
41 (noting that right of withdrawal is much less used than other rights and is limited in important
ways, including requirement in some jurisdictions that “a court must determine that the author
will otherwise suffer grave moral damage”).

656 UTAH LAW REVIEW [2004: 563

Moral rights developed concordantly with their purpose, meaning that
limits to the rights developed along with the rights themselves in certain ways
and in certain situations.293 These limits, while in no way uniform across
jurisdictions, reflect the tension with the pecuniary conception of copyright,
and perhaps signal implicit acknowledgement that the control granted by moral
rights, unchecked, could have negative repercussions.294 Their textual
expression narrows their application. For example, the right of integrity does
not grant control over all modifications, but only over a “distortion, mutilation
or other modification of, or other derogatory action in relation to, the said
work, which would be prejudicial to [the author’s or artist’s] honor or
reputation.”295 In a sense, this is congruent with and supports the right of
attribution because it relates to the author’s or artist’s reputation. In addition,
moral rights show varying degrees of strength in how they differ among
jurisdictions. Differences include their term, and other attributes, such as
whether they can be waived or assigned, or the type of relief available.296

Originating in France, moral rights are one of the many differences
distinguishing the civil law tradition from the common law tradition that
developed in England. The English approach to copyright did not embrace
moral rights. This explains in part the United States’ long-standing hesitancy
toward moral rights. The next Subsection elaborates.

2. United States Avoidance

For a variety of reasons, the United States did not originally embrace

moral rights. Then the United States managed to avoid adherence to the Berne
Convention for the Protection of Literary and Artistic Works for nearly one

293Cf. Michael B. Gunlicks, A Balance of Interests: The Concordance of Copyright Law
and Moral Rights in the Worldwide Economy, 11 FORDHAM INTELL. PROP. MEDIA & ENT. L.J.
601, 604–05 (2001) (describing American unease concerning moral rights and noting European
limits on moral rights). For example, “it is commonly accepted in France that an author’s right
of respect is not as strong when his work is adapted by a third party than when it is reproduced
by the latter.” Françon, supra note 27, at 82 (citation omitted).

294In particular, common law countries influenced the original addition of moral rights to
the Berne Convention in 1928 by ensuring that Berne only addresses the rights of attribution and
integrity, and by insisting on use of the phrase “honor and reputation” rather than “moral
interests” in the right of integrity because the former phrase better tracked common law torts.
Gary Lea, Moral Rights and the Internet: Some Thoughts from a Common Law Perspective, THE
INTERNET AND AUTHORS’ RIGHTS 87, 91–92 (Perspectives on Intellectual Property Series,
Michael Blakeney ed., 1999).

295Berne Convention, supra note 28, § 6bis(1). See William M. Landes, What Has the
Visual Arts Rights Act of 1990 Accomplished?, 5 (John M. Olin Law & Economics Working
Paper No. 123 (2d Series), May 30, 2001), available at http://www.law.uchicago.edu/Lawecon/
(last visited July 13, 2003) (noting that VARA’s right of integrity only protects against
alterations that injure honor or reputation).

296Dietz, supra note 28, at 212–19 (comparing various moral rights laws in several
jurisdictions); Lea, supra note 294, at 101–03.

No. 2] OPEN-SOURCE SOFTWARE 657

hundred years.297 In doing so, it avoided international treaty commitments that
would require it to establish moral rights in U.S. law. Just over a decade ago,
the United States joined the Berne Convention, but with an underwhelming
adherence plan to meet Berne’s prescription for moral rights. The pattern
continued when the World Trade Organization/Trade-Related Aspects of
Intellectual Property (“WTO/TRIPS”) regime came into being in 1995. The
United States successfully negotiated an exception in TRIPS for moral rights
implementation.298

Inheriting our copyright tradition from England, United States copyright
law never wholeheartedly embraced moral rights.299 Our system’s opposition
to moral rights range from ideological to pragmatic. First Amendment freedom
of expression traditions arguably conflict with strong moral rights.300 There is a
potential chilling effect from moral rights, in particular the right of integrity,
when one seeks to criticize or parody a work in ways that make use of the
work in modified form.301 Moral rights also add friction to the alienability of
property and transferability of rights. In a moral rights system, if the work is
embodied in physical form, such as a statue, a buyer takes it subject to the
possibility of these rights. This reduces the theoretical range of use for the
work. Perhaps this prohibits its transfer to a user who would most highly value
it if her use would modify the work contrary to the right of integrity. Another
reason for our system’s hesitancy is that moral rights may require judges to
assess aesthetic values.302

Pragmatic concerns buttressed these various ideological reasons to oppose
moral rights. By giving more control to authors and artists, moral rights would
upset the balance established among commercial publishing and distribution

297See Hansen, supra note 272, at 586–87. Hansen nicely summarizes the United State’s

progression toward Berne Convention membership as follows:
The United States did not provide protection for foreign works for over 100 years.
When the United States finally did begin to provide protection, it imposed a
requirement that books be manufactured in the United States in order to protect the
domestic printing industry. The United States imposed a system of formalities, the
main purpose of which seemed to be to throw works into the public domain,
including many famous foreign works. It just recently joined the Berne Convention,
and did so only because other nations told it repeatedly, “If you are going to preach
the religion [of high protectionist copyright], you must join the Church.”

Id.
298See Lea, supra note 294, at 94.
299See Halpern, supra note 267, at 65–69.
300Kathryn A. Kelly, Moral Rights and the First Amendment: Putting Honor Before Free

Speech?, 11 U. MIAMI ENT. & SPORTS L. REV. 211, 212–13 (1994); Geri J. Yonover, The
Precarious Balance: Moral Rights, Parody, and Fair Use, 14 CARDOZO ARTS & ENT. L.J. 79,
92–93 (1996).

301Yonover, supra note 300, at 103–04.
302Paul Goldstein, Infringement of Copyright in Computer Programs, 47 U. PITT. L. REV.

1119, 1121 (1986); Robert A. Gorman, Copyright Courts and Aesthetic Judgments: Abuse or
Necessity?, 25 COLUM.-VLA J.L. & ARTS 1, 2, 10–13 (2001).

658 UTAH LAW REVIEW [2004: 563

interests, and other interests, such as those of the public, and of authors and
artists themselves.303 In addition, some posit that moral rights can harm
incentives for collaborative works. For example, they may necessitate
additional pre-project bargaining to obtain waiver for the moral rights,
assuming that they can be waived in the applicable jurisdiction.304 Finally,
moral rights can be viewed as less applicable to functional works, because they
have no artistic, personal, or cultural heritage.305

While ideological and pragmatic reasons kept moral rights mostly out of
United States law, two contrary developments arose. First, in response to the
art lobby, several states implemented moral rights for narrow classes of works.
By 1990, a number of states had passed laws providing some form of moral
rights to works of visual art.306 Second, international harmonization pressures
grew for the United States to join the Berne Convention. The United States
finally did so in 1989. In joining Berne, the United States initially argued that,
via an amalgamation of rights available under state law, the Lanham Act,
copyright law’s derivative work right, and other sources, its law substantially
complied with Berne’s prescription of a moral right of attribution and integrity.

Shortly after joining Berne, Congress enacted the Visual Artists Rights
Act (“VARA”).307 VARA implemented a federalized version of the state moral
rights laws. Like its state law predecessors, VARA applied only to narrowly
defined classes of work.308 The total effect of these developments, however,
still leaves naysayers disputing that United States law provides moral rights as
specified in the Berne Convention. Even with state law and VARA moral
rights for visual art, and other moral-rights-like provisions found in United

303Lea, supra note 294, at 94.
304See Landes, supra note 295, at 5; Lea, supra note 294, at 95–96.
305Dietz, supra note 28, at 226 (noting that adjustments have been made to European moral

rights for certain types of works, such as “computer programs, film works and architecture,
where legislators, also of civil law countries, have already introduced some specific provisions
that take into consideration the specific, often utilitarian character of those works”); see also
Lea, supra note 294, at 98 (noting that computer programs are exempt from moral rights
protection in United Kingdom and covered in limited fashion in France).

306See Landes, supra note 295, 15–21 (noting that nine states passed acts to provide some
form of moral rights protection, and surveying some potential economic effects of such
legislation).

307Visual Artists Rights Act of 1990, Pub. L. No. 101-650, tit. VI, 104 Stat. 5089, 5128–33
(1990) (codified as amended in scattered sections of 17 U.S.C.).

30817 U.S.C. §§ 101, 106A(a)(3)(B) (noting that works of visual art includes only
paintings, drawings, prints, sculptures, or photos for exhibition, as single works or in limited
collections of no more than two hundred, while excluding many other classes of works; and that
works must be of recognized stature before their destruction is covered by act). Around the time
of VARA, Congress also made buildings eligible for copyright protection under certain
conditions. See Architectural Works Copyright Protection Act of 1990, Pub. L. No. 101-650, §
702, 104 Stat. 5133 (1990). This is another example of United States law implementing
moral-rights-like protection for artists.

No. 2] OPEN-SOURCE SOFTWARE 659

States law, the criticisms continue that the United States has only tepidly
complied with Berne’s Article 6bis.309

International intellectual property harmonization pressures have moved
away from World Intellectual Property Organization (“WIPO”) administered
treaties such as Berne to the WTO’s TRIPS regime, but without leaving Berne
and other WIPO treaties behind. TRIPS requires countries to implement much
of Berne, but exempts Article 6bis. Practically, this means that the enforcement
mechanisms associated with TRIPS are inapplicable and provide no forum for
those harboring the criticisms that the United States does not comply with
Article 6bis.

 While the United States’ aversion to a strong moral rights regime is in
part rooted in the common law heritage, England has recently enacted moral
rights.310 England’s implementation is in response to European legal
harmonization efforts associated with the European Union. It shows, as some
commentators have noted, that elements of the two systems are becoming
intertwined in many countries’ systems as copyright changes in response to
international harmonization and technological pressure.311

In light of the foregoing, moral rights create two dichotomies, one
doctrinal and one historical. First, under the alternative personality theory
justification for property-like rights in creative works, as opposed to a
pecuniary justification, moral rights create dual systems of rights for authors
and artists in some jurisdictions, most notably, France. The second dichotomy
is the split among civil and common law systems in embracing or rejecting
moral rights. Against this backdrop, and to see how these dichotomies express
themselves in perhaps the most powerful of the moral rights, the next Section
explores the moral right of integrity in greater detail.

309See Roberta Rosenthal Kwall, The Attribution Right in the United States: Caught in the

Crossfire between Copyright and Section 43(A), 77 WASH. L. REV. 985, 987–88 (2002) (arguing
for federal adoption of generally applicable right of attribution); see also Yonover, supra note
300, at 99 n.107 (describing United States support for moral rights post-VARA as limited).

310See PHILLIPS ET AL., supra note 16, at 10 (discussing passage of Copyright, Designs, and
Patents Act of 1988 in United Kingdom).

311See GOLDSTEIN, supra note 20, at 9–10; PHILLIPS ET AL., supra note 16 (discussing
authors’ rights in France and Germany). Canada offers both traditional pecuniary copyright
protection, and widely applicable moral rights. Jonathan Stuart Pink, Moral Rights: A Copyright
Conflict Between the United States and Canada, 1 SW. J. L. & TRADE AM. 171, 186–87 (1994).

660 UTAH LAW REVIEW [2004: 563

B. Right of Integrity

Among the traditional moral rights, after a work’s divulgence, the right of

integrity seems to have the greatest reach.312 With the right of attribution, it
shares an emphasis on reputation.313 Following a framework used to analyze
the French right to respect, the Berne Convention’s expression of the right of
integrity can be thought to have two aspects which share a condition.314 One
aspect is modifying the work, relating to the phrase “distortion, mutilation or
other modification of” in the Berne expression. The second aspect is the
work’s surroundings: has it been placed in an environment against the spirit of
the work? This would relate to the phrase “or other derogatory action.” The
condition is that whichever aspect is triggered, the result must be “prejudicial
to [the author’s or artist’s] honor or reputation.” Recalling the statue example,
the subsequent painting triggers the first aspect, assuming that it is prejudicial.
For the second aspect, however, more context is needed. Assume that the
statue is fine art and is used as a mannequin in a department store—perhaps
this would be an “other derogatory action” with respect to the work. Thus, one
risks violating the right of integrity if one changes the work, or changes its
milieu, by too much.315

As with the other moral rights, and rights generally, the right of integrity’s
other attributes shape its force and effect, such as: whether it is waivable (in
whole or conditionally), assignable, inheritable, its duration, and remedies.316

312The right of integrity has the greatest reach because, as a practical matter, the

withdrawal right is seldom used and is unknown in many jurisdictions otherwise providing
moral rights. Dietz, supra note 28, at 204–05. See Kwall, supra note 309, at 1027–28 (arguing
that implementing more comprehensive right of integrity in United States law is more disruptive
than implementing generally applicable right of attribution). Its reach is greater than the right of
attribution because it theoretically controls a greater range of use for the work.

313See Mark A. Lemley, Rights of Attribution and Integrity in Online Communications,
1995 J. ONLINE L. art. 2, ¶¶ 24–28, 41–43, at http://www.wm.edu/law/publications/jol (noting
interdependence of right of attribution and right of integrity in one’s online persona in context of
electronic Internet communications).

314See Françon, supra note 27, at 77–78 (describing French right to respect as having one
aspect that goes to protecting integrity, that is, respecting current form of work and not
modifying it without author’s knowledge, and another that goes to protecting spirit of work: that
is, author “protests against the environment given to it by a third party”).

315PAUL GELLER, INT’L COPYRIGHT L. & PRAC., at France § 7[1][c][i] (2000). In addition,
some formulations of the right of integrity include violation of that right if the holder destroys
the work. See Colleen Creamer Fielkow, Clashing Rights Under United States Copyright Law:
Harmonizing an Employer’s Economic Right with the Artist-Employee’s Moral Rights in a Work
Made for Hire, 7 J. ART & ENT. L. 218, 227–28 (1997) (noting that one aspect of VARA’s right
of integrity includes prohibition against destroying work, but that this prohibition is limited to
“works of recognized stature”) (citations omitted).

316See Cotter, supra note 17, at 85–86 (summarizing conclusions as to recommendations of
economic analysis for waiveability of right of integrity); see also Lea, supra note 294, at 101–03
(discussing each of listed attributes).

No. 2] OPEN-SOURCE SOFTWARE 661

Jurisdictions, even within civil law systems, vary substantially on these
attributes,317 and a full survey is beyond the scope of this Article and beyond
what is needed for a comparison. Two examples should suffice to show the
range of variance: the French right to respect and the U.S. VARA right of
integrity implementation.318 The French right is perpetual, inheritable, cannot
be assigned or waived, and provides damages or injunctive relief.319 VARA’s
right of integrity, on the other hand, is non-assignable, cannot be inherited,
lasts for the life of the author, can be waived in a sufficiently specific writing,
and has remedies similar to pecuniary copyright remedies.320 That these two
examples would lie on either end of the spectrum is not surprising given that
France is the cradle of moral rights and the United States is a recent tepid entry
to jurisdictions having some form of moral rights.321 The right of integrity’s
various incantations illustrate the law’s adaptive capabilities. The right’s
implementation in each jurisdiction had to fit the greater legal backdrop of
pecuniary copyright as well as economic and cultural influences.

In both cases, the right asserted—the right to respect in France, the right
of integrity in the United States—is separate from pecuniary copyright. Both
sides of the dualist model are unique and independent rights. Despite their
independence, however, they share a more fundamental commonality: they
create rights that “run” with the work, or run with the object in which the work
is embodied. For pecuniary copyright, these rights link principally to
ownership but are limited by doctrines such as first sale when a work is
embodied by fixation, or limited in other situations for policy reasons, such as

317See Cotter, supra note 17, at 13–15 (collecting number of formulations for right of

integrity and giving examples of modifications to works causing violation of right).
318While my illustrative example is for the right of integrity, many of these attributes will

be the same for the right of attribution in each system. That is, the French right of attribution will
vary dramatically from the VARA right for these attributes, while sharing similarities with the
French right to respect.

319See Dietz, supra note 28, at 207, 212–13, 217.
32017 U.S.C. § 106A(d)–(e). The waiver provision requires a written instrument that shall

“specifically identify the work, and uses of that work, to which the waiver applies, and the
waiver shall apply only to the work and uses so identified.” § 106A(e)(1). VARA’s right of
integrity is also limited in its applicability to buildings, where the building owner has power
under certain conditions to remove the work absent a waiver even if removal causes mutilation
of the work. §§ 106A(a)(3), 113(d). VARA treats violations of sections 106A and 106A(a) as
copyright infringement for purposes of the remedies chapter of the Copyright Act, except that
the criminal penalties for copyright infringement do not apply. §§ 501(a), 506(f). Finally, it is
interesting to note that the VARA rights persist for the life of the author when pecuniary
copyright, that is, the rights of section 106, persist for the life of the author plus seventy years.
§ 302(a).

321See GOLDSTEIN, supra note 20, at 291–92 (describing trends generally as to waiver and
other limitations among jurisdictions).

662 UTAH LAW REVIEW [2004: 563

fair use.322 The limitations notwithstanding, pecuniary copyright “runs” with
the work in the sense that the copyright owner (not necessarily the original
author) can exercise some control over the holder’s use of the work—such as
prohibiting reproductions.323

Moral rights also run with the work. They do so in a more direct way. For
example, in VARA, the right of integrity is limited only by fair use in 17
U.S.C. § 107, whereas the pecuniary copyright rights of section 106 are limited
by sections 107 through 122.324 Moral rights also stay with the author, not the
copyright owner. This creates the possibility that a work’s owner may have to
answer to two parties depending on what she does with the work. In the
sculptor example, if the work’s holder creates duplicates of the now-painted
statute, and the sculptor has assigned her copyright to a third party, the holder
faces a potential right of integrity violation suit from the sculptor, and
separately, a potential reproduction right infringement suit from the third party.

Pecuniary copyright creates rights that attach to software, that in effect
“run” with the code. Moral rights, in jurisdictions where they apply to
software, also follow the code. In both cases this means, most fundamentally,
that a contract or other rights-regime is unnecessary to enforce these rights as
the work, or code, transfers down a chain of distribution. The next Section
elaborates on how this characteristic, and moral rights in general, apply to
software.

C. Moral Rights in Software

The moral rights that run with software are often less powerful, if present

at all in a jurisdiction, than moral rights for other copyright subject matter.
They can be problematic for software and for the open-source approach. By
their very definition, they attach to each copy of the computer program, that is,
to the instructional composite. A violation could occur through modifications
to the source code instructional composite or by direct modifications to the
object code.325 In either case, modifications of the software that violate the

322Although principally the copyright owner is empowered to enforce the rights, in certain

situations exclusive licensees can also enforce the rights they have been licensed. See NIMMER &
NIMMER, supra note 55, § 12.02[B].

32317 U.S.C § 106(1) (2000). See also Margaret Jane Radin & R. Polk Wagner, The Myth
of Private Ordering: Rediscovering Legal Realism in Cyberspace, 73 CHI.-KENT L. REV. 1295,
1312–13 (1998) (discussing contracts that “run with” an object and how these devices can be
used to extend or reduce the baseline intellectual property rights upon which they are based).

32417 U.S.C § 106 (2000).
325For example, many software packages list the names of key developers in the first

window or screen displayed. The object code is directing the computer operating system to
display the screen. Traditionally, it was a relatively straightforward exercise for a software
expert to excise a name from the list, or perhaps replace one name with another, all the while
operating directly on the object code.

No. 2] OPEN-SOURCE SOFTWARE 663

right of integrity are analogous to painting one statue purple when the sculptor
has produced many unpainted copies of her statue. The technical difference is
that copying the software is much easier. But, generally put, there is no legal
difference if the changes in both cases mutilate, modify, or distort the work in
a way detrimental to the author’s or artist’s honor or reputation.

1. Attenuated Implementation and Coverage

Even in civil law jurisdictions, moral rights in software are attenuated.326

In other jurisdictions, such as the United States, they are unavailable for
software and computer programs. The reasons for this are many and, on the
whole, reasonable. First, software’s dual character as both an expressive and
functional work implies that moral rights are less imperative. In the prevalent
personality-theory basis for moral rights, it is the expressive aspect of a work
that embodies the creator’s personality. The intuition is that if software is
primarily or even substantially functional, there is less need for a right of
attribution or integrity.327 Second, moral rights developed for classic copyright
subject matter. Given the questions in the early years of computing as to
whether software was a literary work protected by copyright, it seems prudent
to not endow software with additional rights.

Third, like other digital works, software is inherently more malleable than
traditional works fixated in physical form. Computer programs are designed to
be modified, or easily modifiable. A right of integrity, where the author can
govern modifications, would be counterproductive to the sequential and
successive processes used to develop software.328 In almost all cases, if the
software is continually used, it will continue to need modifications. This is the
well-known commercial practice of releasing new versions of software. The
right of attribution is also problematic for digital works—it is difficult to keep

326See Lea, supra note 294, at 98 (discussing limitations on moral rights in United

Kingdom and France).
327See GELLER, supra note 314, at France § 57[2][a] (2002) (noting that need seems less

urgent to apply French right to respect to works, such as software, which leave less imprint of
author’s personality); Fakes, supra note 266, at 609 (arguing that for moral rights in software
“serious doubt exists as to the suitability of their application to works frequently produced
collectively, having a technical, industrial or commercial character and subject to successive
modifications” (quoting Commission of the European Communities: Green Paper on Copyright,
COM(88)173, final at 197)).

328My thanks to Mark Lemley for suggesting this point, especially in the case of the
traditional moral right of integrity as it might apply to software.

664 UTAH LAW REVIEW [2004: 563

an attribution fingerprint on the work as copies of it propagate across the
Internet.329

Moral rights in software are attenuated in two ways, jurisdictionally, and
by limits to the rights themselves. Some jurisdictions that provide moral rights
in other copyright subject matter do not apply them to software. The United
States is an example of this case. Other jurisdictions provide moral rights in
software but clip the rights. For example, France provides a right of attribution
for software, but its right to respect in software explicitly specifies that
modifications for use and debugging are allowed.330 The remaining
jurisdictions are those whose moral rights are specified equivalently for
software and other copyright subject matter. Examples here are Canada and
Italy.331

Even in their attenuated form, moral rights, and specifically the right of
integrity in its classic form, can present problems for open-source software
licenses. I cover these problems in the next Subsection. In the next Part,
however, I turn this situation on its head to argue that the right of integrity
might enable an additional claim against one who violates the license terms
that implement the open-source approach.

329At least with current and past technology, keeping an attribution fingerprint on a digital

work such as source code required the recipients in a chain of distribution to honor the posted
attributions. Many recipients had the technological capability to modify the attributions. Within
an open-source software project, however, there is usually a technological barrier to
misattribution because the source code is submitted to, or checked in and out of, a repository,
such as a source code control system (“SCCS”). Thus, one who checked out some code from the
SCCS, revised it, stripped the attributing information, and resubmitted it to the SCCS would be
easily discovered. Another technology that in the future may increase the permanency of
attribution information is Digital Rights Management (“DRM”) or Digital Rights Expression
(“DRE”) technology. These technologies envision a system that automatically controls the uses
of a copyrighted work according to the rights granted or expressed in information carried along
with the work. See Symposium, The Law and Technology of Digital Rights Management, 18
BERKELEY TECH. L.J. 697, 715, 732–33 (discussing DRE and DRM and differences between
two); see also Thomas C. Greene, MS to eradicate GPL, hence Linux, THE REGISTER, at
http://www.theregister.co.uk/content/4/25891.html (June 25, 2002) (positing conflict between
newly announced DRM technology from Microsoft and GPL open-source license).

330See GELLER, supra note 314, at France § 7[2][a]; see also Lea, supra note 294, at 98
(noting France’s allowance of computer program debugging).

331See David BENDER, INTERNATIONAL COMPUTER LAW §§ 7.09, 7.33 (2002) (discussing
moral rights for computer programs in Canada and Italy); see also GOLDSTEIN, supra note 20, at
284 (discussing Canada’s law); PHILLIPS ET AL., supra note 16, at 17 (discussing Canada’s law).

No. 2] OPEN-SOURCE SOFTWARE 665

2. Discord with the Open-Source Approach?

The open-source approach332 seeks to ensure that source code is always

available and royalty-free, regardless of the software’s end use. Source code
availability serves a variety of purposes, one of which is allowing others to
modify the software to suit their unique needs. Although many members of the
open-source community might disfavor certain uses of their software, out of
necessity the open-source approach must be disinterested in the end users’
ultimate use. In other words, to be most effective, the approach must not
discriminate against those who would put the software to uses which the
developers would not. Thus, for example, open-source developers might be
heard to complain that they do not want their software used in the engineering
process for producing nuclear weapons, or in biotechnology agribusiness labs
creating genetically modified organisms (“GMO”). But imposing such
restrictions in a license, while perhaps satisfying in the instance, in the
aggregate is counterproductive to the aims of the open-source approach. This is
generally recognized in the community. For example, the Open Source
Initiative’s OSD certification program specifically requires that a license not
discriminate as to use.333

Most developers in collaborative open-source projects are working with
source code carrying an interlocking web of copyright-based license
permissions.334 Thus, these developers do not control the copyright in all of the
code, and, as a result, they are typically unable to privatize the project if they
decide that an end use was unacceptable. They do not own the copyright in
enough of the project to privatize it all. Moreover, they have likely modified
and redistributed, as well as used, the software under the license granted by
other copyright owners whose contributions appear in the software. This binds
them to the license terms.

Assume for the moment, however, that a single developer owned the
entire copyright in the project. Further assume that this developer was highly
dissatisfied with the use of the software by a certain group of end users,
GMO biochemists. This developer would have the power to discontinue use of
the open-source approach—in effect, privatizing the project. Prior licensees

332Using the GPL as the paradigmatic example of the open-source approach, it is a

generally applicable license that requires, as a condition to use the software, that one who takes
the software can use it, modify it and redistribute it if she conforms to the following: (1) makes
the source code available, (2) does not charge royalties for software use, (3) propagates the same
terms for redistributed or modified software, (4) includes notice of the GPL terms, (5) attributes
modifications to the maker, and (6) disclaims warranties and liabilities. See supra text
accompanying note 102 (discussing GPL).

333See OSD 1.9, supra note 220, §§ 5–6 (prohibiting discrimination against persons or
groups, or against fields of endeavor, if license is to meet OSD certification).

334See supra text accompanying notes 102–106 (explaining how ongoing contributions to
open-source software might function).

666 UTAH LAW REVIEW [2004: 563

and end users could presumably continue their use under the previously
granted license. But this privatizing developer would at least be able to limit
the use of her future development efforts. She might even rerelease future
versions of the software under a discriminatory open-source software license—
one that implemented the open-source approach but did so only for certain
types of end use.335 Assuming that her programming contributions were
important to the software and that any user would prefer using the new version,
she would have implemented her goal of excluding the GMO developers from
further use of the evolving software. Of course, the developer could also
simply stop working on the project, but this may be undesirable due to the
developer’s investment in the project and her ongoing satisfaction from her
participation in the project. In this scenario the developer would have
effectively used the copyright power to add a condition to the open-source
license: don’t use the software to help create GMOs.

Moral rights, specifically the right of integrity, create the possibility of a
similar situation and control mechanism but with important differences. One
difference is that any programmer could exert the right without holding all the
copyrights. Unless her contributed code is so minor that it could be easily
excised from the project, a programmer could hold-up a group of users with a
claim that the group’s modifications, or even mere use, violated her right of
integrity in the software. Such a claim would obviously have disruptive effects
in the developer community associated with the project.336 Another difference
is that it is unusual and unlikely for a single developer to own all copyrights in
an open-source project, whereas a programmer will hold her right of integrity
in her source code if the applicable jurisdiction provides the right. Thus, a right
of integrity in software might provide the opportunity for a programmer or
group of programmers to bypass the hospitable-to-modifications sharing
foundation established by the open-source approach. The disgruntled

335Of course, an open-source license that excluded GMO biochemists would not qualify

for certification under the Open Source Initiative’s Open Source Definition. OSD 1.9, supra note
220, §§ 5–6.

336A similar disruptive effect can result from allegations of copyright infringement such as
those involved in a suit filed by SCO in March 2003 against IBM, alleging that IBM
incorporated software SCO licensed to IBM under confidentiality agreements into the Linux
source code. See Steve Lohr, No Concession From I.B.M. in Linux Fight, N.Y. TIMES, June 14,
2003, at C1 (describing suit and noting concern caused by suit among corporate technology
buyers); SCO Files Suit Against IBM, at http://www.sco.com/ibmlawsuit/ (last visited May 23,
2003) (plaintiff’s Web site describing suit and providing links to documents SCO filed). Later,
in developments related to the IBM dispute, SCO “announced plans to seek licensing fees
potentially totaling billions of dollars from users of” Linux. See David Bank, SCO Announces
Plans to Seek Licensing Fees from Linux Users, WALL ST. J., July 22, 2003, at B5, available at
2003 WL-WSJ 3974680 (also noting that “SCO has retained David Boies . . . , who played a
major role in the government’s antitrust case against Microsoft”). The move against users is
related to SCO’s copyright infringement suit against IBM, alleging that IBM in fact incorporated
SCO’s code into Linux without permission. Id.

No. 2] OPEN-SOURCE SOFTWARE 667

programmers could wield the right of integrity to govern modifications to the
software when the open-source license specifically permits all modifications.
Under a dualist conception of moral rights, where the rights are separate from
pecuniary copyright,337 this is at least a possibility.

A right of integrity assertion in open-source software would be different
and potentially more detrimental than a fork in an open-source project. With a
fork, the disgruntled group simply strikes their own, new path with the
software. Under the open-source approach, the mere act of forking gives them
no power to object to anyone else’s modifications. Indeed, if the forking
group’s software turns out to be better, the jilted original developers are free to
incorporate it back into their project.338

One of many nuances to this analysis is whether the right of integrity can
be waived.339 If the jurisdiction’s moral rights statute allows waiver in a
sufficiently broad fashion, then open-source licenses could require such a
waiver, or existing licenses might be read to implicitly waive assertion of
moral rights.340 Another nuance is that, in some jurisdictions, moral rights are

337See GOLDSTEIN, supra note 20, at 291 (noting that “in most countries an author’s moral

rights are doctrinally separate from his economic rights”). Goldstein states that this is illustrated
by the “opening phrase of Berne Article 6bis(1) guaranteeing the rights of attribution and
integrity[:] ‘[i]ndependently of the author’s economic rights, and even after the transfer of said
rights.’” Id. (citation omitted).

338This is another example of how the open-source approach might encourage
collaboration. If the jilted original developers decide to incorporate the renegade forking group’s
code into their project, it suggests a truce. In other words, when the source code and software
can be fully examined, the possibility of better solutions for portions of the software arising from
another group, channels all participants toward collaboration in order to most effectively
combine the best efforts from otherwise partitioned groups.

339See GOLDSTEIN, supra note 20, at 291 (noting that, despite French approach to contrary,
moral rights in most countries last “no longer than the author’s economic rights . . . and may be
subject to waiver”). A number of other issues could bear on the situation I have hypothesized,
among the most prominent, I would argue are, choice of law and choice of forum issues. If the
software in which the right of integrity is being asserted is used in another
non-software-moral-rights jurisdiction, which law applies? This will be related to the choice of
forum where the action is brought. These issues are beyond the scope of this Article, but they
illustrate the increasing complexity that will bear on the open-source approach as it continues to
expand internationally.

340These various possibilities for waiver depend on the requirements to waive the right of
integrity in the relevant jurisdiction. For example, in VARA, to be effective a waiver must meet
the following stipulation:

[R]ights may be waived if the author expressly agrees to such waiver in a written
instrument signed by the author. Such instrument shall specifically identify the work,
and uses of that work, to which the waiver applies, and the waiver shall apply only
to the work and uses so identified. In the case of a joint work prepared by two or
more authors, a waiver of rights under this paragraph made by one such author
waives such rights for all such authors.

17 U.S.C. § 106A(e)(1).

668 UTAH LAW REVIEW [2004: 563

perpetual and inheritable.341 This raises the specter that a contributing
programmer’s heir would assert the moral right with a different sensibility than
the programmer might have exercised.

Thus far, my account of moral rights in software is a story only of the
trouble that these rights might cause and how they have accordingly been
attenuated. A postulated case for moral rights in software relying on
personality-theories of property would argue that a programmer endues her
personality in the expressive elements of the software. Programmers can be
heard to describe some source code as elegant or beautiful.342 Source code
programming languages allow for flexibility of expression, but much less so
than in traditional human languages. So, while there can be elegance, layered
complexity, economy of expression, and clever construction in source code, it
does not have poetic style, characters, double meanings, or turns of phrase in
any degree like traditional copyrightable literary work.343 An exception is that
the comments in the source code might have these characteristics. Moreover, in
traditional literary works, sometimes the originality lies in breaking the rules of
grammar and syntax. With source code, the rules must be followed. If they are
not, the compiler will see errors in the source code, and it may fail to generate
the object code version of the instructional composite, or may generate object
code that does not perform the intended function or has unintended
consequences.344 Thus, when programmers speak of beautiful or elegant
software, these complements principally reach to clever and effective use of
the programming language by marshalling, combining and invoking the
abstractions and mechanisms the language provides. This, in part, makes a case

The VARA waiver requirements are specific to a degree such that if they applied to

software, it would be challenging to write a generally applicable waiver to be incorporated into
an open-source license covering all uses of the software. If the waiver requirements were less
stringent, in particular eliminating the signed writing requirement, an open-source license might
be able to incorporate a general moral rights waiver.

341Most notably, in France. See GELLER, supra note 314, at France § 7[3].
342See Richard A. Danner, Redefining a Profession, 90 LAW LIBR. J. 315, 350–51 (1998)

(discussing and quoting from David Gelernter’s Machine Beauty: Elegance and the Heart of
Technology, on possibility of beautiful and elegant software).

343Some application areas of software and computer science push the limits of my
assertion comparing software to traditional literary works, most notably artificial intelligence
systems, and gaming software, systems, and environments. However, for the vast majority of
commercial software, my asserted contrast holds true.

344Recall that the compiler is a special program that translates the source code instructional
composite into the object code instructional composite that the computer can execute directly.
Unlike an expert human translating German into Japanese, who can likely correct for a broad
range of grammatical or meaning ambiguities in the German source, the compiler’s ability to
correct is more limited. Typically, the compiler can only flag problems for the programmer in a
post-compilation report. It usually classifies problems by severity. Thus, some problems may
prematurely abort the compilation process, while others may allow it to finish, but (due to errors
the programmer left in the source code) result in object code that does not fulfill the intended
goals.

No. 2] OPEN-SOURCE SOFTWARE 669

against moral rights in the source code instructional composite but leaves open
the question of the object code and the computing result.

Some software applications are graphics related and as such their object
code may generate audio-visual displays—a computing result that may qualify
for copyright protection, not as a literary work, but as an audio-visual work.345
These works are more directly analogous to traditional visual arts copyright
subject matter. As such, perhaps the case for moral rights in these works is
stronger than for source code.346

The functional nature of software and the source code instructional
composite argue against extending moral rights to software. Despite this, some
jurisdictions provide such rights, often in attenuated form. The full form is
reserved for traditional copyright subject matter, such as visual art and literary
works. The visual arts are at the center of traditions that spawned moral rights
protection through events in Europe’s civil law jurisdictions since the time of
the French Revolution. Even the United States has joined the moral rights
movement for narrowly defined classes of visual arts. In the past, moral rights
cleaved a clear dichotomy among the world’s jurisdictions—civil law
jurisdictions provided the rights and common law jurisdictions did not. These
lines have blurred under international harmonization and other pressures.
Harmonization, however, has been minimal with respect to moral rights.347
Thus, to the extent that moral rights reach software, a greater degree of
nonuniformity may wait there for the open-source approach, risking
perturbations to the approach.

Despite these differences, from a deeper perspective, an artist asserting a
right of integrity in a statue shares something with an open-source programmer
seeking to keep her software free, sharable, and available with source code.
They share a reputational interest in the respective forms they seek to preserve,
and a desire to preserve their work for a greater community. From these
parallels, in the next Part I discuss three implications apparent from the
comparison.

345ROBERT P. MERGES ET AL., INTELLECTUAL PROPERTY IN THE NEW TECHNOLOGICAL AGE
407, 958 (3d ed. 2003).

346Although the similarity of some computer-generated audio-visual works with traditional
visual arts may suggest moral rights protection, other factors may counsel against it, such as the
frequent difficulty of identifying a single creator of such works. See Lea, supra note 294, at 95–
96.

347See GOLDSTEIN, supra note 20, at 291–92 (pointing to different levels of moral rights
accommodation in civil and common law systems); see also Doris Estelle Long,
“Globalization”: A Future Trend or a Satisfying Mirage?, 49 J. COPYRIGHT SOC’Y U.S.A. 313,
319–20, 353–55 (2001) (“present harmonization efforts in areas such as . . . moral rights
demonstrates that much [intellectual property right] harmonization is a mirage”); see also
Hansmann & Santilli, supra note 17, at 97–98 (“[W]ithin individual European countries there is
often considerable controversy about the precise interpretation to be given existing statutory and
decisional law concerning artists’ moral rights.”).

670 UTAH LAW REVIEW [2004: 563

V. COLLABORATIVE INTEGRITY FOR OPEN-SOURCE SOFTWARE

The open-source movement uses a nascent approach combining copyright
law and generally applicable licenses to grant conditional permission for others
to use, modify, and redistribute software. The conditions implement the
approach, requiring source code availability, no royalties, allowed
modifications and redistribution, and reapplication of these same conditions on
redistribution. These conditions create a parallel impression compared to the
right of integrity: both techniques control the view that a work presents. The
open-source license demands a view with source code. The right of integrity
demands a view that preserves the author’s or artist’s personality as expressed
in the work.

There are three consequences in this comparison. First, that the
comparison teaches a better understanding of the open-source approach.
Second, that jurisdictions providing a right of integrity in software, which
creates some risk for the open-source approach,348 also may give an additional
basis for programmers to enforce the open-source conditions. Third, that the
law should evaluate an altered approach to protecting open-source software
inspired by the dualist nature of the moral right of integrity. I sketch an altered
model suggested by the traditional civil law author’s moral right of integrity,
but modified for the collaborative nature of software development:
“Collaborative Integrity” for open-source software. The following sections
address each consequence in turn.

A. Comparative Implications and Insights into the

 Open-Source Approach

If, metaphysically, it can be said that an author or artist embodies her

personality in her work, then it can similarly be said that an open-source
programmer endues her software with an expression of personality when she
demands that it be available with source code and be freely sharable. This
assertion can be appraised in several ways by examining reputation, values,
characteristics of the work, external effects, and effects on the author, artist or
open-source programmer.349

348See infra Part V.B (discussing problems right of integrity poses for open-source

approach).
349I ground my comparison in these five metrics because they provide the relevant context

for a “consistent character structure” model of personality. See Radin, supra note 33, at 963–64,
965–68 (discussing four potential models of personality and describing “consistent character
structure” model as ability to project continuous life plan into future, where one’s consistent
character structure integrates interpretations of past and plans for future).

No. 2] OPEN-SOURCE SOFTWARE 671

1. Reputation

Reputational interests link the right of attribution and the right of

integrity. Both rights help the author or artist preserve their reputation. The
right of attribution ensures that the creator is named when she should be and is
not named when she should not be.350 The right of integrity governs
modifications to a work when the modifications will not only reflect poorly on
the author or artist, metaphysically damaging the expressed personality in the
work, but also when the modification may harm the reputation accruing to the
artist from the work.351

Strikingly, together these two moral rights bracket the variations among
open-source software licenses. As an example of a minimally restrictive open-
source license, I have previously discussed the Apache license. At the other
end of the continuum is the GPL, which is the most “controlling”—meaning
that it has the greatest reach and ambition to ensure that the open-source
approach applies to the originally GPL-licensed software, any modifications to
it, and to software coupled with either of these. The Apache license’s primary
requirement is attribution. It allows any use of the source code and software as
long as attribution is proper and other notices are posted.352 The GPL, on the
other hand, corresponds to the right of integrity: both seek to control the view
that a work presents. The GPL also has conditions similar to the right of
attribution.353 The correspondence among the moral rights and the open-source
licenses is illustrated in the table that follows. This table includes the OSD as a
midpoint approach between the GPL and Apache licenses.

350My use of “attribution” in this context is broad. For example, the Berne Convention

associates attribution with claiming authorship in the work, but does not explicitly speak to
situations where the author has been improperly associated with a work. Berne Convention,
supra note 28, § 6bis(1). Commentators have described these two possibilities as two aspects of
the right of attribution, the positive and negative aspect, and noted that jurisdictions vary as to
whether they explicitly recognize both aspects in their right of integrity implementation.
Hansmann & Santilli, supra note 17, at 130–36.

351See Hansmann & Santilli, supra note 17, at 102–03 (noting one’s personal reputation as
one reason author may wish to maintain right of integrity in their work).

352See Apache License, supra note 141.
353See GNU, GPL, supra note 99, § 2(a) (requiring notices).

672 UTAH LAW REVIEW [2004: 563

Issue Apache OSD354 GPL

Right of Attribution correspondence correspondence correspondence

Right of Integrity n/a partial
correspondence355

correspondence

Table 2

Correspondence Among Certain Moral Rights and
Open-Source Software Licenses

Thus, deeply similar reputational considerations pervade both open-source

software and moral rights. Reputation is the effect of one’s exposed personality
over time. It is the flip side of the expressed personality embodied in a creative
work or freely shareable source code. Commentators have noted the effect of
reputation in each context.356 Artists and authors can use moral rights to
protect, promote, and enhance their reputation. The right of attribution ensures
proper identification with a work. It helps the viewer to associate what she
finds in the work with its creator. The meaning, impression, and assessment the
viewer takes from the work, along with any preconceptions, forms her opinion
of the work and its creator. When she expresses her opinion to others, she
contributes to the ongoing construction of the creator’s reputation. Thus,
through its viewers, a work infuses an artistic reputation into the world.357 The
right of attribution helps ensure that this infusion is properly tagged.

The right of integrity, by governing modifications, helps ensure that the
infusion is the proper one the artist set to the work originally—not a false
reputation-carrying infusion resulting from someone else’s modification of the

354Recall that the OSD is not a license, but rather, it is a specification for a certification

system operated by the Open Source Initiative to classify open-source licenses. See supra note
168 (defining OSD as “a set of guidelines” managed and promoted by OSI). See also supra note
261 (noting questions about the GPL and guidance offered by OSD).

355The OSD has partial correspondence with the right of integrity because it merely allows
a qualifying license to require that redistributions reapply the same license terms. But, the OSD
specification, unlike the GPL, does not require that the open-source license do so. Thus, the
OSD does not demand the reapplication provision. Because the OSD makes the reapplication
provision permissive, it does not guarantee that modified redistributions of the software will
continue to carry the same licensing power to control the view presented by the work. See
OSD 1.9, supra note 220, § 3 (“The license must allow modifications and derived works, and
must allow them to be distributed under the same terms as the license of the original software.”).

356See Hansmann & Santilli, supra note 17, at 102–05 (noting traditional justification for
moral rights stemming from harm to artist’s personality embodied in work, and noting effects of
aggregate and temporal reputational effects for author’s work: “[The] works we label ‘art’
commonly involve important reputational externalities, thus giving both the artist and others an
unusually strong interest in protecting the integrity of individual works.”).

357See Hansmann & Santilli, supra note 17, at 104–06.

No. 2] OPEN-SOURCE SOFTWARE 673

work. The right of integrity helps the author or artist preserve the view the
work presents—the view it had when they originally divulged it.358 Thus, the
work’s intrinsic contribution to the author’s or artist’s reputation is held
constant by the right of integrity.359 Extrinsic factors may change, such as the
work’s circulation, popularity, cultural and artistic tastes, or even the author’s
or artist’s own agenda or emphasis. But as long as the work exists, the view
that it presents endures as long as the right of integrity is available and
enforced. If an author or artist has an evolving or even radically changing
motif, she faces a choice about whether to enforce the right of integrity for
earlier works. Indeed, she might prefer that the earlier works were no longer in
circulation contributing to her reputation if she has re-made her style.

The open-source approach has similar reputation-bearing effects. The
license conditions typically call for proper attribution and seek to preserve the
source code view of the software. Comments in the source code, as well as
other technological mechanisms, denote who wrote the code. Indeed, one of
the greatest sins in the open-source community is to modify these attributing
comments in order to wrongly designate the original coder. The requirement
that the source code be available functions synergistically with the attribution
condition. This condition makes the source code viewable so the attribution
can be identified.

Other programmers, as well as users, or those merely technologically
curious, can examine the programmer’s code and make a variety of
assessments similar to those made of the artist when viewing a work of art. The
use of color or perspective, brushwork, and texture impress the art connoisseur
as the data structures, modular design, and skilled use of computing
capabilities impress the software expert or hacker. The artist can preserve her
work’s view with the right of integrity. The open-source programmer preserves
her work with a combination of technology and the open-source requirement
that source code be available. As a digital work, modifications do not impinge
on the original, provided that they are made to a digital copy, which is almost
always the case. The copies leave an organized lineage and ancestral copies are

358The author or artist must actively enforce the right of integrity for it to have the effect of

locking in the original view presented by the work. In some jurisdictions authors and artists have
a right to withdraw the work in certain situations on equitable terms. See supra note 26 and
accompanying text (citing sources which discuss author’s right in civil law tradition, including
right to withdraw). If an artist or author withdrew the work this would diminish or eliminate its
contribution to the author’s or artist’s reputation.

359See Hansmann & Santilli, supra note 17, at 105 (noting that “each of an artist’s works is
an advertisement for all of the others”).

674 UTAH LAW REVIEW [2004: 563

typically available for inspection.360 Thus, a programmer can earn a reputation
not only by the code she originally writes, but also by how well she evolves
her code over time. Or, she might earn positive reputation by writing code that
is well suited for others to modify and evolve. This last point introduces a
discrepancy in the comparison.

Artists may or may not care about their reputation within the greater
community of artists for their genre, but open-source programmers on large
collaborative projects must and do care whether their code works with other
programmer’s code. How well their code works in the larger project will
contribute to the programmer’s reputation. The functional aspect of software,
along with the need for code from many programmers to come together as an
operating whole, adds this aspect to reputation building in open-source
software that is not present to the same degree in traditional arts and literary
works. This is not to say that artists or authors do not care about their
reputations among their peers, but only to highlight that their reputation among
that group does not depend on functional interoperability.361 Moreover, this is
not to say that there is no collaboration among artists or authors, but it is
collaboration of a sufficiently different degree as to be different in kind.
Software’s functional nature requires open-source programmers to care about
this additional dimension of their reputation.

The foregoing illustrates that moral rights, developed long ago, and open-
source licenses, developed recently, have similar reputation protecting
functions. This gives reason to acknowledge, at a level higher than might
otherwise pertain, the importance of reputation in the open-source approach.

360The lineage and traceability for old copies of the code are typically provided by a source

code control system (“SCCS”), around which most collaborative open-source software projects
are organized. The SCCS is a repository technology that holds the code and helps manage and
organize programmer contributions to the project. See supra note 204 (briefly describing how
SCCS functions).

361Of course, the impact on reputation from the need to functionally interoperate is a
continuum. While much art lies on one end (minimal impact), and most software on the other,
some art, and perhaps contemporary entertainment projects, such as film production, fall in the
middle. See Margaret Chon, New Wine Bursting From Old Bottles: Collaborative Internet Art,
Joint Works, and Entrepreneurship, 75 OR. L. REV. 257, 258, 266–68 (1996) (arguing that
“authorship practices in networked computer environments result in works that disrupt the
distinction between author and infringer and that create a type of access to works (the access of a
joint author to a joint work) that is underdeveloped in current copyright doctrine[,]” and
describing the Chain Art Project as an example of a new type of work of visual art created on the
Internet).

In collaborative software projects, there is some technological partitioning of the software
to facilitate interoperability among the contributors’ code. These mechanisms include design
approaches that partition the source code into modules (or in other ways), relying on layering of
functions, or use of software “objects” to assist the partitioning. The mechanisms that define the
partition boundaries seek to, among other goals, generate indifference. One module or object
should be able to exist and function, perhaps at a lower level, even if other modules or objects
are nonfunctional or behaving in unexpected ways.

No. 2] OPEN-SOURCE SOFTWARE 675

Moral rights’ reputation protecting features are central to the rights’ operation.
This shows their importance for authors and artists because moral rights in
France developed during an era when society perceived a need to protect these
groups in order to shed vestiges of the old censorship environment.362
Moreover, the rights promoted French culture and language by protecting its
artists and authors.363 The fact that all this emerged in the moral rights regime,
and that it reemerges in similar form for open-source software, highlights the
supportive function played by protecting reputation in both regimes. It also
gives reason to view the open-source license as critical conditions that have
reputational effects. There is a type of feedback that occurs—protecting
reputation makes the producers in each system more likely to be able to obtain
the satisfactions available from individual creative activity. This pattern,
previously emerged for moral rights, legitimizes its role in open-source
software. Similar to the way authors and artists needed to develop reputation,
the open-source programmer contributes to collaborative projects in order to
earn reputation. Protecting the mechanism by which reputation infuses into the
open-source community helps the programmer ensure that any “earnings” she
obtains will last. The role of reputation in moral rights should give pause to
discounting the role of reputation in open-source software. Finally, it
reemphasizes the importance of the rights and the mechanisms deployed to
protect it.

2. Values and Beliefs

If reputation is an external pressure for the artist to create, or the open-

source developer to contribute code, then each group’s values and beliefs are
the internal pressure. This is the second way in which I will appraise the
assertion that the open-source approach carries and expresses personality
equivalently to moral rights.

Personality in the sense used to classically justify moral rights is a
metaphysical concept.364 Even so, values must be a part of what comprises it.
Among whatever attributes that the author or artist endues to her work,
expression of values must be one. The values appear in the choice of work or

362See Michael P. Ryan, Knowledge-Economy Elites, The International Law of Intellectual

Property and Trade, and Economic Development, 10 CARDOZO J. INT’L & COMP. L. 271, 291
(2002).

363See Hansmann & Santilli, supra note 17, at 106 (noting that “community benefits [from
art] have the character of a public good, [and thus,] the current owner of the artwork has
insufficient incentive to protect them by protecting the work itself”). Thus, moral rights help
protect the character of art’s public good, and, in parallel fashion, the open-source approach
helps protect the foundation for open-source collaboration—which has produced public good
software.

364See Elliot C. Alderman, Resale Royalties in the United States for Fine Visual Artists: An
Alien Concept, 40 J. COPYRIGHT SOC’Y U.S.A. 265, 282 (1992).

676 UTAH LAW REVIEW [2004: 563

subject matter, its medium of expression, as well as the many choices during
implementation.365 For example, a sculptor chooses to create Native American
historical figures only in life-size format, sometimes presenting the character
with contemporary objects, but always using very dull materials and colors
because she believes that this motif will stir a response and carry a message. In
addition, an author’s or artist’s values may include practicing one’s passion
even without pecuniary benefit. The “starving artist” is a stereotype, but it is a
stereotype that illustrates values that put the experience of artistic creation
above increased income or economic security. Thus, multiple aspects of an
author’s or artist’s work express a few, or many, of the creator’s values.

In addition to the author’s or artist’s individual values, societal or
communal values inform moral rights and approve, at some level, the construct
that the creator endues the work with something of herself. The birth of moral
rights occurred in an environment where post-revolutionary French society
valued art and culture.366 The society sought to preserve authors’ and artists’
freedom to create without government interference like that imposed by the
Crown before the revolution. The force of this felt societal need is evidenced
by the surprising judicial development of moral rights in a civil law system
where the statutory code is supreme and judges are not thought to develop law
in a common law method.367 Moreover, the copyright code against which
French judges developed moral rights expressed, to some degree, the pecuniary
copyright ideology—incentives for production of expressive works by
providing a modicum of protection—rather than purely an author’s protection
rationale.368 Thus, societal tastes and values that venerated artistic output
supported production of that output.

Just as the author’s or artist’s individual values emanate from her work, so
do the values of an open-source programmer who contributes code to a
collaborative project or who goes it alone on a solo project. The choice to start
or join an open-source project is a value choice linked to the beliefs and
motivations of the open-source movement: that source code should be
available to show what it teaches; that it should be freely shareable in order to
facilitate the first goal and as a matter of principle; and that sharing creativity
is a reward unto itself. By contributing code to a project, the open-source

365See Liemer, supra note 17, at 43 (discussing how art, regardless of its medium or

message, allows “others a glimpse into [the artist’s] individual human consciousness”).
366See id. at 41.
367Peeler, supra note 29, at 433–37, 452–55. Hansmann and Santilli note another

out-of-character aspect of moral rights between the civil law and common law traditions:
[P]atterns of rights that are mandatory under the civil-law regimes of Europe have
been forbidden by the common law. This is in strong contrast to the usual
relationship between these two legal systems: in general, the common law is far
more hospitable to the creation of divided property rights than is the civil law.

Hansmann & Santilli, supra note 17, at 96 (citation omitted).
368See Ginsburg, supra note 36, at 1014.

No. 2] OPEN-SOURCE SOFTWARE 677

programmer expresses these values. Moreover, the programmer’s project
choice is a value expressing action. She may choose to work on a graphics
application rather than an operating-system hardware driver, because she
believes that the open-source approach has critical mass and is doing well in
the server operating-system market but needs contributions in graphics to have
a chance to develop a presence on the desktop market, where Microsoft
Windows products currently rule.369

The programmer determines these value-expressing actions within the
greater context of the open-source community, a virtual society that both
supports the open-source approach by promulgating open-source licenses to
protect the foundation for collaboration, and provides the technological and
communal collaborative superstructure to develop open-source software for
fun and profits of the nontraditional source.370 Unlike the French development
of moral rights, the open-source community cannot necessarily count on courts
to develop the rights from a felt necessity of the times. However, the open-
source movement can and has promulgated its own generally applicable
private law under open-source licenses, and this has a similar effect. Thus, the
community is a reinforcing attendant of the values that the programmers
express.

These parallels note that value expression has a role similar to that of
reputation in seeking to better understand the open-source approach. It makes
sense to assign importance to value expression in the open-source approach,
because it is the reemergence of an earlier manifested pattern for moral rights
and their value-based development and course of use.

3. Source Code Expressing “Personality”

The discussion of reputation and values shows that open-source software

can embody and express personality, but it assumes a capacity for software to
express personality similar to that of other copyright subject matter. This
assumption requires examination, because software has unique attributes as
copyrightable subject matter. Despite the differences, in terms of personality
expressing capacity, the similarity is sufficiently close to conclude that the
open-source approach carries and expresses personality equivalently to moral

369One example of the efforts to develop open-source software for the desktop market

where Microsoft’s Windows operating system is dominant is the “Lindows” variant of Linux,
which advertises that it delivers “the power, stability and cost-savings of Linux with the ease of
a windows environment.” What is LindowsOS?, at http://www.lindows.com/lindows_sales_
intro.php (last visited July 31, 2003).

370The open-source community includes facilities such as the SourceForge Web portal for
open-source projects. It provides a free place for open-source programmers to control and
manage their collaborative projects. See supra SourceForge, About SourceForge, note 107
(highlighting functioning features of SourceForge).

678 UTAH LAW REVIEW [2004: 563

rights, even if traditional closed software does not, or perhaps cannot, because
the source code is not available to be viewed.

The expression possibilities in source code are certainly substantial, but
are less than that of traditional human languages, because source code, while
implemented in a “language,” is also a functional tool created to direct,
marshal, and invoke computing resources.371 Programmers may think of source
code as beautiful or elegant, but this praise is more about respect and
admiration as to how the language tools were deployed rather than beauty in
the traditional artistic sense. Even so, when the programmer’s deployment
choices are exposed in disclosed source code, they carry reputation and values.

The reputational effects are apparent. The source code displays the
programmer’s skill and knowledge in many ways. Both her coding skill and
software design skills are on display.372 Her knowledge of efficient and clever
techniques for data modeling and algorithm deployment is also on display. The
choice of project to which she contributes also adds to the impression.
Moreover, this is not a static process, evaluated only upon the initial submittal
of the programmer’s source code. It is dynamic, as the programmer responds to
feedback about her software, interacts with other developers while
incorporating her software into a larger whole, and evolves the source code
based on these inputs and user feedback. Similarly, the source code carries
expressions of the programmer’s values, sometimes explicitly in the comments
embedded in the code, or else implicitly by the choice of where and how to
contribute. Software generally may not carry or express a cultural or personal
heritage like traditional artistic or literary copyrighted works.373 If this is a
truism, open-source software is the exception—it is unique because it is
production activity for non-pecuniary reward (or at least not for direct
pecuniary reward). It springs from a value-carrying and value-expressing
heritage emphasizing collaborative sharing and peer-review of software’s
source code.

371See supra text accompanying notes 341–43 (explaining how “[s]ource code

programming languages allow for flexibility of expression, but must less so than in traditional
human language”).

372Since many applications can be equivalently developed in a number of different
programming languages, even a programmer’s choice of programming language signals his or
her skills, preferences, and even values and personal expressiveness. Some programming
languages are designed to allow greater flexibility of expression, and some are associated with
particular ideologies or viewpoints within the open-source community. See Lee Gomes, Two
Men, Two Ways To Speak Computerese And Two Big Successes, WALL ST. J., July 21, 2003, at
B1, available at 2003 WL-WSJ 3974546 (describing two open-source scripting languages and
the key developers behind each, contrasting the characteristics of each language to the
characteristics of the key developer).

373See Drexl, supra note 21, at 12–13 (contrasting computer software with traditional
artistic and literary works).

No. 2] OPEN-SOURCE SOFTWARE 679

4. External Effects

If the open-source approach carries and expresses personality equivalently

to moral rights, then some parallelism should exist between the primary
external effects of each: a tendency to preserve in some relevant way the works
in question. One justification for moral rights is that it helps to preserve a
society’s artistic and cultural heritage. To the extent authors and artists enforce
their rights, in particular the right of integrity, they preserve art and other
copyrighted works for society.374 The sculptor who guards against the painting
of her statue by wielding the right of integrity may satisfy her own desire to
counter this mutilation, but her efforts also preserve the work in its original
form for others to view. To the extent the work is culturally important, her
efforts may have important third-party impact.375 In aggregate, the right of
integrity, depending on its attributes (e.g., term and waiver376), should create a
pressure resulting in preservation of more works than would otherwise pertain.
Even a weakly specified right, such as a waivable right of short duration,
should have some preservative impact.377 A strong-form right, such as the
French right to respect, with its perpetual term and inability to be waived,
should, all else being equal, cause an even greater preservative pressure.

374See Cotter, supra note 17, at 36–37, 73–76 (describing the potential protective impact of

moral rights on works of art, but arguing that questions exist as to whether this mechanism is
optimal). Cotter notes the difficulties

[E]ndowing the artist with a moral right is a rather awkward method for protecting
the public interest in the preservation of art. Perhaps the most obvious cost is
administrative. A society that endows artists with moral rights necessarily incurs
costs related to the enforcement and administration of those rights, whereas a society
that chooses not to recognize them incurs analogous costs only on the rare occasion
that someone chooses to attempt to create moral rights by contract.

Id. at 74 (citation omitted).
375See Cotter, supra note 17, at 37 (discussing potential third-party effects of artist/buyer

transaction).
376Other terms that define the features of moral rights include whether they are inheritable,

and their status in what United States law would call a work for hire situation. See Fielkow,
supra note 315, at 220 (describing “clash between the work made for hire doctrine and the moral
rights doctrine” where Second Circuit has held that under VARA “art was a work made for hire
and therefore fell outside of the statutory protection”).

377See Hansmann & Santilli, supra note 17, at 104–07 (discussing effect of rights on
different interests). One commentator’s attempt to empirically assess the effect of state laws in
the United States, which protect moral rights, showed inconclusive results as to the effect of
these laws on artists’ earnings. See Landes, supra note 295, at 15–21 (correlating state moral
rights protection to various economic indicators, and finding that while there was no effect on
artists’ earnings, there was “a positive and significant effect on the number of artists living and
working in the state”). Landes postulates a possible explanation for the increased artists
population density in states with moral rights laws: “the rhetoric surrounding these laws and the
prestige of the people supporting them signal to the community at large that art is a highly
valued social enterprise. In turn, this creates greater interest in art and a more favorable social
environment for artists.” Id. at 19.

680 UTAH LAW REVIEW [2004: 563

The open-source approach directly contemplates a similar phenomenon.
One stated purpose of the movement is to make source code available. Due to
the way the open-source approach works, via the reapplication provision
(requiring the same license terms to be applied on redistribution of modified
versions), the original source code as well as evolving versions of the code
remain available for others to view. As a result, the code’s lineage is preserved,
because the technological systems used to manage the software will preserve
successive versions.378 Even more important, however, is preserving the
software from privatization—keeping the open-source software’s partial
dedication to the public domain vibrant and viable. For the open-source
approach, privatization is mutilation that derogates the honor of the
programmers who collaboratively developed the project.

Just as the moral right of integrity exists in weaker or stronger forms,
depending on the jurisdiction, open-source licenses exert more or less control
over the software. Even Apache, the weak-form license primarily providing an
attribution-like right, has some preservative effect in the sense of forestalling
privatization. Indeed, in conjunction with a well-organized collaborative effort
and the benefits of centralizing the functionality, forks in the project have not
occurred and competitive offerings via privatization (completely allowed under
the Apache license) have not emerged.379 Thus, there seems to be a preserving
effect of even a weak open-source license just as there would be a preserving
effect of a weakly specified right of integrity. On the other end of the scale, a
strongly specified open-source license such as the GPL eliminates the Apache
license risk of privatization. As a result, it will more effectively preserve the
source code view of software for all those who desire to modify and

378See supra note 360 (noting that lineage and traceability of code are provided by SCCS).
379The Apache license allows any use of the code as long as attribution is maintained and

other notice requirements are met. Undoubtedly some Apache code has been privatized in the
sense that companies have used portions of the code in traditionally licensed software products,
but the entire project has not been privatized in the sense that no significant competing,
traditionally licensed product has arisen from the Apache source code base. This preservative
effect is driven by at least two preferences of the technologically sophisticated users of the
Apache product—often Web site operators and managers. First, they are comfortably familiar
with the technical expertise of the open-source developers and prefer the product from that
group. Second, they prefer source code availability to enable them to make small customizations.
See Mockus et al., supra note 4, at 318–19 (describing interactions among the core Apache
developers and the greater user/minor-developer groups); see also Bessen, supra note 5, at 15,
17–18 (noting that although “someone could legally use the Apache code to produce a
customized closed source product, this has not been done”).

No. 2] OPEN-SOURCE SOFTWARE 681

redistribute the software.380 The GPL also eliminates royalties for use of the
software, providing further preservation, because the incentives to use the
software are heightened by the lowered cost to do so.381 Greater use and
proliferation means greater preservation, in the sense that more users means
more potential modifiers and redistributors, all of whom must operate under
the GPL.

The parallels between moral rights and the open-source approach are
about preserving an important characteristic of each type of work. The parallel
is not fully identical. The right of integrity preserves the original form of the
work, whereas the open-source approach preserves a particular form for
software that allows modifications and collaboration. The difference is that one
seeks to prohibit modifications while the other seeks to promote them. This
surface difference, however, should not obfuscate the deeper parallelism. Each
regime promotes an end result which has, arguably, beneficial external effects
for third parties and society as a whole.382

380This assertion assumes that both licenses, the Apache license and the GPL, have full

legal efficacy for their respective aspirations. The gap, however, between the two licenses is so
significant, that even if the most far-reaching provisions of the GPL, such as the extension
provision, are of uncertain efficacy, the GPL still provides a comparatively greater measure of
protection against privatization of the source code. See supra notes 104–44, 350–54 and
accompanying text (comparing two licenses).

381The cost to use open-source software is arguably lower, but not zero. It is not zero
because most open-source licenses allow for fee-based distribution. In addition, software
ownership and computing resources are often measured in institutional environments by a “total
cost of ownership” (“TCO”) model. Thus, while the lack of royalties for open-source software
may lower its total cost of ownership, it will not drive it to zero. Indeed, one could argue that the
TCO for open-source software may be higher than traditional software because open-source
products are typically geared toward sophisticated users and may not be as “user-friendly” as
traditional software. See Evans, Preferring OSS, supra note 129, at 40, 42 (discussing TCO
model, “which includes training and support,” and open-source software’s failure to make
“inroads in most business—and household—software categories”).

382Each regime claims beneficial features for society, but opposing contentions dispute the
purported benefits. For moral rights, the claimed benefits of protecting artists and preserving and
promoting art are disputed by the contention that the preservation effect is blunted and the
additional transaction costs arising from moral rights, in aggregate, do more harm than good for
artists. See Landes, supra note 295, at 8–11 (discussing proposition that integrity rights are
inefficient where costs exceed benefits). Similarly, for open-source software, while it boasts
private production of a public good, contentions disputing the benefit include: that total cost of
ownership is actually higher with open-source software, that government support of open-source
software is anti-competitive, Evans, Preferring OSS, supra note 129, at 42–47, that open-source
software may produce too many versions of the software too fast, and that the inability of an
open-source project to charge for and capture rents is counterproductive because it leaves the
software underdeveloped for certain classes of uses and users. While the arguments on both
sides for both regimes have some force, the benefits of open-source software seem more
verifiable by simply gauging the growth in use of open-source software generally, and
particularly among the flagship products such as Linux or Apache.

682 UTAH LAW REVIEW [2004: 563

5. Effects on the Author, Artist, or Open-Source Programmer

Similar to the analysis for external effects, equivalency between open-

source and moral rights should also show parallels in how violations of rights
in both regimes affect the respective individual creators. Both types of works
express personality, so violations in each case affront the personality of the
creator. One classic argument explaining moral rights is that if the work
embodies an extension or expression of the creator’s personality, then
modifying or mutilating the work harms the creator’s personality. It is, in an
imprecise analogy, akin to a metaphysical personal insult.383 Understandably,
an author or artist will be upset by the mutilation of her work. The event may
rankle the work’s creator. Even if she obtains a remedy enforcing the right of
integrity, her enthusiasm for the work, or for a greater body of related work,
may be dampened. Systemically, violations may produce incentives to create
less risky works, curtail creative striving to some degree, use or make less
controversial subject matter, or avoid certain venues or forms.

An open-source programmer may suffer similar effects if the key open-
source license conditions are violated, resulting in privatization of the
software, or in loss of attribution for the programmer. One model of the open-
source movement posits a gift culture where collaborating programmers and
users value gifts and the satisfaction that comes from giving.384 A violation of
the open-source conditions (in particular, the source code, no royalties, and
reapplication provisions) disables the given source code gift. Unchecked
violations create an instance, stream, or fork of the software that does not
express the original gift intentions of the programmer when she contributed the
software. Similar to the posited effects for right of integrity violations, open-
source license violations can create counterproductive incentives for the
individual programmer’s future participation and, consequently, for the open-
source movement as a whole. The anti-privatization power of the open-source
approach is a foundation condition for open-source collaboration. When a
programmer’s source code is taken and privatized in violation of the open-
source license, she will likely feel as if something was wrongly taken from her.
Even though she intended to give away the source code, her gift was
conditional, and it is reasonable for her to expect the conditions to be followed.
Further, she may be less likely to contribute in the future after having suffered

383See Liemer, supra note 17, at 43.
384Raymond, supra note 189, at “The Hacker Milieu as Gift Culture” (“In gift cultures,

social status is determined not by what you control but by what you give away.”).

No. 2] OPEN-SOURCE SOFTWARE 683

a violation, or may participate at a lower level of investment.385 An example of
the latter would be to desist in writing code but continue to use the software
and dutifully report software errors and bugs when discovered. These reports
are less directly subject to privatization and require less energy than generating
new code.

As with the posited parallels for external effects, the parallels in this
discussion are not fully identical. The creative medium in open-source
software is more functional than the creative medium for traditional literary
and artistic works. As a result, the metaphysical affront from violations in each
area will have a different character. The painting of the statue may make
hideous what was once beautiful. The unavailability of source code, or
charging of royalties, cuts off collaborative opportunities for the source code,
limiting its potential reach and distribution as open-source software.386 Loss of
beauty and loss of collaborative opportunity may be equally upsetting, but they
are different losses.

Losses felt by the author, artist, or programmer reveal the metaphor
between the open-source approach and moral rights. The link is through a
model of personality. Affronts to the work are metaphysical affronts to the
personality expressed in the work. Traditional literary and artistic subject
matter, as well as open-source software, carry an expression of the creator’s
personality in different but analogous value-laden ways. This carried
expression has external effects related to the expressed personality. In part,
these external effects establish and infuse the creator’s personality-based
reputation. The aggregate implications of these phenomena, and in particular

385This portion of my argument depends on the assumption that (or takes its strongest form

when) the programmer volunteered the code and was not paid to develop it. Estimates range on
the question, but a non-trivial amount of open-source software is developed by programmers
working in research settings or even in for-profit institutions such as Red Hat or IBM. These
programmers might be expected to suffer less personal “harm” if the open-source conditions are
violated for their code. While admitting that open-source code developed in this way weakens
this point of the argument, it does not eliminate it, because not all open source is developed
institutionally, and anecdotally, it is recognized that a sense of mission influences programmers.
Although a programmer is being paid to work on an open-source project, the programmer’s
energy, productivity, and personal investment in the task is greater if a programmer buys into the
movement.

386To say that violating the open-source conditions limits the software’s reach as open-
source software is not to say that the open-source approach is the best approach for a particular
type of software. In some cases, privatizing the software or developing it as a traditionally
licensed software product might extend its reach and market share beyond that attainable using
the open-source approach. The question is how to determine which approach, open-source or
traditional, is optimal for a particular application. See Raymond, supra note 125, at Part 10.2
(arguing that criteria to choose between open-source or traditional approach includes that one
“can expect that open-source has a high payoff where (a) reliability/stability/scalability are
critical, and (b) correctness of design and implementation is not readily verified by means other
than independent peer review. (The second criterion is met in practice by most non-trivial
programs.)”).

684 UTAH LAW REVIEW [2004: 563

their analogous reemergence in open-source software, show that a reputation
and personality perspective of the open-source approach should not be lightly
dismissed. Indeed, these comparisons teach the importance of these aspects to
the open-source approach.

B. Right of Integrity Enforcement of the Open-Source Approach

The license conditions implementing the open-source approach, like the

right of integrity, control the view that a work presents. This raises several
implications, the first of which, discussed in the previous Section, is that each
type of work is capable of expressing the personality of the work’s creator. The
second implication is the subject of this Section: the possibility that
jurisdictions providing a right of integrity in software also may, through this
right, give an additional basis for programmers to enforce the open-source
conditions. This is not to say that on balance a right of integrity for software is
a desirable thing. Indeed, such a right creates several potential problems for the
open-source approach. Foremost, is the possible use of a software right of
integrity to effectively bypass the open-source license conditions by attempting
to govern modifications to the source code when the conditions expressly
allow such modifications.387 Despite these problems for open-source software,
and other general concerns about moral rights in software, some jurisdictions
provide these rights in software to some degree. By doing this, these
jurisdictions illustrate another parallel between the right of integrity and the
open-source approach.

In jurisdictions that provide a right of integrity in software, my second
claim is that, under the perspective I put forth below, an open-source
programmer may be able to use that right to enforce the key open-source
license conditions. She would argue that such a license violation is a distortion,
mutilation, or other modification detrimental to her honor or reputation.388 This
is an unorthodox use of the right of integrity, because it involves using the
right to protect the opportunity for others to modify the work rather than
prohibiting modifications. But at another level, it is similar: use of the right to
prohibit a few very important meta-modifications. In other words, the
programmer asserts the right of integrity to ensure that there are no

387See supra notes 335–37 and accompanying text (briefly describing how assertion of

right of integrity in open-source software might look). A full discussion of all the potential
ramifications of moral rights on the open-source approach, or on software development in
general, is beyond the scope of this Article. My main point is that when provided by a
jurisdiction, the right of integrity in software adds another layer of analysis to the dispute,
aspects of which can cut both for and against the open-source approach.

388I have described the programmer’s argument in the language of the Berne Convention’s
specification of the right of integrity. However, the actual claim would depend on the
jurisdiction’s codification of the right of integrity, and would be cast in that language.

No. 2] OPEN-SOURCE SOFTWARE 685

modifications to the key nonnegotiable open-source license terms: source code
availability, no royalties, and reapplication of the same terms to redistributions.

The text of the open-source license would be the centerpiece of the
argument that an open-source license violation is a right of integrity
violation.389 Building on the parallels drawn in the preceding Section, the
argument is that the open-source license expresses the integrity that should
endue in the software. The software can only accrue to the programmer’s
honor and reputation if the source code is available, signaling the
programmer’s values in contributing to an open-source project and signaling
her reputation in marshalling and invoking computing resources via the
programming language. Indeed, if the software is redistributed without source
code, it may harm the programmer’s reputation, because the licensees of the
redistributor will be unable to make changes to suit their unique needs.
Moreover, within the open-source community, when the software is known to
be open-source, having one’s software in circulation without the source code
can have reputational impact.390

The license terms support a right of integrity claim, because they are
evidence that the expressed personality in the work is to partially dedicate the
software to the public domain under the open-source approach. This is more
than a statement of intention by the programmer, because she expects that the
conditions will be followed.391 If not, she suffers a personal injury when her
source code gift is co-opted, and the beneficial external effects of the open-
source approach are denied to a wider community.392 It derogates her honor
and reputation like painting the sculptor’s statue.

389In critiquing my second claim, Mark Lemley offered the following intriguing

perspective: that the GPL acts to “cut off authors’ integrity rights by irrevocably pre-licensing
derivative works.” This perspective runs against my second claim, at least to the extent that it
limits my second claim’s attempt to associate the open-source licensing approach with the
traditional right of integrity. Admittedly, my second claim depends on a recharacterization of the
GPL’s intent in-line with the purposes of integrity’s anti-modification prohibitions. Such
recharacterization, to the extent it works, probably does so only for the key aspects of the open-
source approach: source code availability and no royalties for use.

390Reputational impact from open-source software circulated without the source code
could take several forms. First, it could be taken as an omission that produces an inconvenience
for the user. Second, it could shake the user’s understanding that the software was open-source,
perhaps raising questions as to whether it had been privatized. Finally, it may raise questions
about the effectiveness of the project leader(s) in coordinating and facilitating the collaborative
effort of the group.

391Regardless of any questions as to the legal efficacy of the open-source approach or any
particular open-source licenses, by and large most licenses are followed because doing so
beneficially establishes the collaborative foundation.

392The extent of injury felt by the programmer may be of lesser degree, or even
non-existent, if she wrote the software at the direction of an institution that employs
programmers to generate software that it releases into the open-source movement. See supra
note 385 (highlighting effects of institutionally sponsored open-source programming).

686 UTAH LAW REVIEW [2004: 563

There are limits to this proposal—not every license term violation would
validly represent a loss of integrity in the open-source approach, but those that
do are easy to assess. For example, failure to implement the notice provisions
associated with disclaiming warranties and liabilities is an important, but
peripheral, license provision not central to the integrity of the open-source
approach. However, evaluation of the central open-source license provisions is
straightforward, avoiding some of the difficult assessments necessary for the
right of integrity. Judges need not aesthetically assess the work when deciding
whether it has been mutilated or modified. There is no such awkward step for
judges applying the right of integrity to the open-source approach, because it is
straightforward to evaluate whether source code was made available. Similarly,
judges can readily evaluate other aspects of the open-source approach.
Determining whether royalties were improperly charged is similar to a court
making an accounting assessment. Whether the open-source license terms were
reapplied on redistribution is also a straightforward assessment.

If integrity in the open-source approach is a viable alternative basis to
enforce the approach, this raises the question: when would the alternative be
necessary or desirable? Since the open-source approach is based on conditional
permission to use a copyrighted work, the necessity would arise whenever a
programmer or group of programmers cannot enforce the copyright rights. This
could occur for a number of reasons. Most of these, however, are avoidable
reasons. The most likely possibility is that the programmer assigned the
copyright rights to another person or entity, and the assignee is unwilling or
unable to act. Or perhaps the programmer did not secure a reciprocal promise
from the assignee to enforce the open-source license.393 In contrast to situations
where integrity in the open-source approach is the only alternative, because the
copyright cannot be enforced, bringing a right of integrity claim alongside a
copyright infringement claim is useful to increase the chances of forcing
compliance with the open-source approach. By claiming in the alternative, the
programmer increases the defense’s burden and benefits her position in the
enforcement action.

Besides its potential value as an alternative claim in an open-source
enforcement action, this proposal suggests that courts could look to right of
integrity cases as persuasive authority for the importance of upholding the

393There are several other less-likely possibilities as to why the programmer might be

unable to enforce her copyright. The copyright may have expired and the software is still in use
(and the right of integrity is still available). The programmer may not have registered the
copyright in a jurisdiction requiring registration to bring suit and there is some obstacle to
registering the copyright at the time of suit. A related issue is the question of beneficial
ownership and the possibility to enforce the copyright even if one has assigned her copyright
rights. See Kwall, supra note 25, at 47–51 (discussing possibilities of beneficial ownership under
United States copyright law to enable copyright holder to assert rights even after assignment of
copyright); see also NIMMER & NIMMER, supra note 55, § 12.04[B]–[C] (discussing United
States copyright infringement standing doctrine and bringing suit as beneficial owner).

No. 2] OPEN-SOURCE SOFTWARE 687

open-source approach as a copyright license. There are no open-source
software cases available as precedent. Thus, for jurisdictions that provide a
software right of integrity, bringing the alternative claim is one way to focus
the court’s attention on the parallels between moral rights and the open-source
approach. Traditional software licensing and copyright infringement cases
would be the main staple of precedent in a United States copyright
infringement action over an open-source license. There could be value in
supplementing this primary source of law with the perspective recorded in
right of integrity cases, whether they be from the United States or international
jurisdictions. The parallels are sufficiently strong that such an approach might
help the court see the open-source approach from a different perspective—one
with a credible and long international history and one with a presence in the
United States for visual arts.

Although the United States does not provide a right of integrity in most
copyrightable subject matter, some jurisdictions provide the right across the
board, including a full-fledged right of integrity in software.394 This creates
both potential problems and opportunities for the open-source approach. The
opportunity may have practical utility, allowing one to bring an alternative
claim to enforce the open-source license based on integrity in the open-source
approach. Beyond that use, this possibility further illustrates the parallels
between the two regimes. This Section and the prior Section reviewed these
parallels in two ways, first by showing how both regimes express the
personality of their respective creators, and second, by suggesting that the right
of integrity may apply directly to the open-source approach. The next Section
combines and extends these first two insights for my third claim: that a specific
right of Collaborative Integrity should be considered for open-source software.

C. The Potential for Collaborative Integrity

Having reviewed the parallels between moral rights and the open-source

approach, where each system controls the view that a work presents and allows
the respective creators to express their personality in their works, the third
implication raised by these parallels is whether the open-source regime could

394See supra note 331 and accompanying text (touching on jurisdictional differences in

moral rights provisions).

688 UTAH LAW REVIEW [2004: 563

be improved by incorporating elements of the moral rights system.395
Specifically, I argue that the legal community should evaluate an altered
approach to protecting open-source software and I sketch an alternative model
I call “Collaborative Integrity” for open-source software.

Taking a cue from the French dualist model of moral rights, as well as
from VARA in the United States, where authors’ rights are separate from
pecuniary copyright,396 in United States law, Collaborative Integrity could be
implemented under a statutory public law mechanism as a right separate from
the Copyright Act’s current section 106 rights.397 Collaborative Integrity would
recognize the functional nature of software. As with the
copyright-licensing-based open-source approach, it would provide a
foundation for collaborative endeavor among programmers to share freely
usable and modifiable source code. As a statutorily implemented right, it
would bring greater certainty to the open-source software movement.

Evaluating Collaborative Integrity is important for a number of reasons.
First, due to the often-raised questions about open-source licenses and their
degree of enforceability, it makes sense to evaluate potential alternatives.
Second, the open-source approach is growing internationally, in some places

395The parallels that exist between open-source software and the right of integrity are not

exclusive to this pair. Other technology licensing approaches also offer a rough parallel to the
right of integrity, perhaps even to a greater degree than open-source software. In this vein, Mark
Lemley suggested the example of Java, a programming language standard and technology that
Sun Microsystems licenses to other vendors, requiring the venders to conform to the standard—
which analogizes to keeping a sense of integrity about the standard for interoperability. See
David McGowan, Has Java Changed Anything? The Sound and Fury of Innovation Litigation,
87 MINN. L. REV. 2039, 2041–49 (2003) (discussing aspects of government’s antitrust action
against Microsoft as it relates to allegations that Microsoft implemented nonconforming version
of Java standard). Indeed, when Microsoft implemented a nonconforming version of Java, Sun
was able to bring suit under the license to encourage conformity. Sun Microsystems, Inc. v.
Microsoft Corp., 188 F.3d 1115, 1117 (9th Cir. 1999).

39617 U.S.C. § 106A(a) (VARA’s moral rights are “independent of the exclusive rights
provided in section 106”).

397See Madison, supra note 245, at 338 n.221 (in a critique of contemporary software
licensing, noting the potential for moral-rights-like rights for licensing open-source software);
see also Yochai Benkler, Through the Looking Glass: Alice and the Constitutional Foundations
of the Public Domain, 66-SPG LAW & CONTEMP. PROBS. 173, 194–95 (2003) (noting that open-
source licenses implement rights securing the programmer’s attribution and integrity in the
software).

No. 2] OPEN-SOURCE SOFTWARE 689

more rapidly in certain ways than in the United States.398 One has less
confidence in a copyright-based licensing approach when the licenses may
need enforcement in separate international copyright jurisdictions, many of
which have at the heart of the open-source approach nuances in the copyright
infringement and licensing law. Third, the similarities highlighted in the
previous two sections suggest that it is important to sketch Collaborative
Integrity in order to fully explore the learning possible from comparing the two
systems.

I proceed in two phases. First, I discuss the reasons supporting a separate
right of Collaborative Integrity and some of the possible objections.
Collaborative Integrity should further heighten the incentives for the creation
and contribution of open-source software. At a policy level, it would express
an approval of the volunteerism inherent in the open-source movement, which
has produced valuable public goods, in part due to substantial private effort. It
could facilitate evolving forms of open-source project organization and
management. Alternatively, it could supplement the enforcement power of
open-source licenses that seek to attach additional conditions on open-source
use. Second, I sketch the rough contours of the right of Collaborative Integrity.
It should certainly include the following central elements from the open-source
approach: source code availability, royalty-free use, rights to modify and
redistribute, and reapplication of these same terms to redistributions. These
elements provide the collaborative foundation. However, to further specify the
right requires addressing whether it should include the extension provision—
that feature of the GPL that sought to extend the GPL’s terms to software
coupled to the GPL-licensed software in particular ways. In addition, questions
linger about how long the right should persist, and whether it should be
waivable or assignable.

1. Rationale for Collaborative Integrity

Given the doctrinal uncertainty about the open-source licensing system,

Collaborative Integrity should heighten programmers’ incentives to contribute
source code by making the rights more certain. Programmers, relying on the

398See Evans, Preferring OSS, supra note 129, at 34 & n.1 (describing legion of countries

considering proposals to make open-source software official preference). Government
preferences for open-source software could include preferences in its use, that is, choosing open-
source software due to perceived cost savings and customization opportunities. See Byron
Acohido, Linux took on Microsoft, and won big in Munich: Victory could be a huge step in climb
by up-and-comer, USA TODAY, July 14, 2003, at B1, available at 2003 WL 5315241 (describing
how the city of Munich, Germany, decided to use Linux rather than Microsoft’s Windows
operating system). Government preferences could also include contributing source code to open-
source projects. Governments at all levels write, or have written, substantial amounts of code,
raising the possibility that if they contributed the code to open-source projects the code would
bring greater value to a wider group. Lessig, supra note 89, at 65.

690 UTAH LAW REVIEW [2004: 563

expectation that their source code will remain open, are motivated to
contribute. Developers on large open-source projects experience the various
satisfactions from open-source development only if the open-source approach
is respected and provides a foundation for collaboration. For example, a
programmer receives much less reputational impact if the software is
promulgated without source code.399 Thus, a legal regime providing greater
certainty for the open-source approach increases the programmers’ estimation
that the desired outcome will occur, assuming she is aware of the legal
dimension of her choice. There is evidence that programmers who start open-
source projects are aware that they should choose a license for the project,400
signaling an awareness of the importance of the legal rights underpinning the
project. Greater certainty in the rights that keep source code available should
increase the incentives to contribute, or at least decrease potential hesitancy to
contribute.

The ex-ante incentives deriving from more certain rights under
Collaborative Integrity are in contrast to, but supported by, ex-post approval of
a programmer’s contribution, and the open-source approach in general, that
Collaborative Integrity would express. Although copyright-based private-law
generally-applicable open-source licenses implement the open-source
approach, they do not embody a societal judgment endorsing open-source. As a
statutory regime, Collaborative Integrity would express this approval. It would
provide the open-source movement with express endorsement of the approach
and the volunteerism inherent in the community.401 One could argue that
copyright law already expresses the appropriate policy approval, because one
of its goals is to generate the production of creative works that will eventually
fall into the public domain for all to use. Open-source accomplishes a very

399That a programmer obtains less reputational impact (as opposed to no impact) assumes,
as is typically the case, that the software contains authorial identifiers external to the source
code. These are sometimes found in ancillary files in the distribution, or in the software’s
introductory screen(s) or “help” system. With effective attribution, reputational incentives can be
an important force generating copyright subject matter. See Ryan, supra note 170, at 652 n.25
(noting that legal academic literature pays little attention to noneconomic reasons for creative
production, and citing others for the proposition that “reputational rewards achieved through
wide dissemination provide far more creative incentive than the financial reward . . . connected
with the licensing and sale of individual copies of work’” (citations omitted)).

400Lerner & Tirole, Scope of Licensing, supra note 98, at 1–2, 8–10 (describing survey of
approximately 40,000 open-source projects housed at SourceForge.com open-source repository,
survey intending to explore factors influencing open-source developer’s choice of license for
project).

401See Landes, supra note 295, at 19 (noting that state moral rights laws may have
produced better social environment for artists in those states). If state moral rights laws can
produce a better environment for artists in a state, then Collaborative Integrity can also produce a
more conducive environment for open-source programmers. On the other hand, however, one
might object on the basis that there are other ways to foster this environment, such as by
government preferences in using and contributing to open-source software. See supra note 398
(citing success of such approach in Munich, Germany).

No. 2] OPEN-SOURCE SOFTWARE 691

similar goal, perhaps more effectively than copyright, and certainly more
quickly. But just because open-source happens to support a long-term
copyright goal does not mean that copyright policy fits open-source. The
inversion between the systems is too great because the methods are so
different. Open-source software is such a unique reversal of the copyright
paradigm that it deserves its own protective right, Collaborative Integrity, and
the attendant social and policy approval inherent in vesting the right.402

Collaborative Integrity, as a separate right from copyright, could facilitate
new arrangements for open-source project repositories, organization, and
governance. It would allow a programmer to assign her copyright in the
software to another person or entity, yet still retain her right of Collaborative
Integrity. Some open-source project repositories and institutions already
request such assignments from contributing programmers.403 And some
commentators have suggested the desirability of a public trust or conservancy
approach to house open-source software.404 The potential desirability of these
approaches stems in part from the unavoidable baggage that comes from
copyright in software and the license as a species of contract. The problems
fall in two main areas: infringement related problems and other problems.

The recent lawsuit by SCO against IBM provides an example of
infringement related problems. SCO is a small company which allegedly holds
rights to portions of certain Unix operating-system software, and which, either
directly or via its predecessors in interest, had licensed the software to a wide
variety of vendors. SCO sued IBM for alleged violations of SCO’s software
license agreement with IBM. In the agreement, IBM promised not to disclose
trade secrets in Unix source code that SCO provided to IBM. SCO alleges that
IBM copied some of this code into Linux, thus disclosing the trade secrets,
because Linux is open-source software. If SCO’s allegations are true, it has a
copyright infringement case against the many users of Linux distributions that
contain this IBM-supplied code.405

402See Goldstein, supra note 302, at 1120–22 (arguing that copyright protection is

workable solution to protect software, but acknowledging that other options might include “a
new intellectual property system specifically tailored to attract investment toward the desired
level and objects of innovation”).

403Eben Moglen, Why the FSF Gets Copyright Assignments from Contributors, at
http://www.gnu.org/licenses/why-assign.html (updated Jan. 29, 2004); OpenOffice.org, Joint
Copyright Assignment Form, at http://www.openoffice.org/licenses/jca.pdf (updated Sep. 10,
2002) (implementing joint assignment of copyright in contributed code).

404See Benkler, Coase’s Penguin, supra note 4, at 446. See also Ryan, supra note 170, at
705–06 (proposing public trust model for copyright and information works).

405Indeed, SCO has followed its allegations against IBM to this conclusion and has
announced plans to seek licensing fees from certain institutional Linux users. See supra note 336
(noting disruptive effect and potential liability of Linux users stemming from SCO suit).

692 UTAH LAW REVIEW [2004: 563

Among the many potential ramifications of this lawsuit is its illustration
of a competitive disadvantage for open-source software in the eyes of
corporate and enterprise customers: lack of intellectual property
indemnification. The major Linux distributors, for the most part, do not
provide this indemnification, because the source code in a Linux distribution
comes from thousands of programmers who hold an interlocking web of
copyright ownership in the software.406 This disperse ownership group, while
overcoming collective action problems to develop and combine their software,
has not come together to establish a system that would allow indemnification.
Enterprise customers would not accept indemnification from such a disperse
group anyway; the indemnification would need to come from a major market
participant such as IBM or Red Hat. Indeed, one vendor, Hewlett Packard, has
offered a limited indemnification for Linux running on its hardware.407 The
most effective way for a central entity to provide indemnification is to own all

406Charles Cooper, The Next Big Linux Controversy, CNET News.com (July 18, 2003), at

http://news.com.com/2010-1071_026988.html (last visited July 20, 2003) (noting that, as of date
of news report, none of Linux distributors or resellers, including IBM and Red Hat, offers
intellectual property indemnification to their licensees). Microsoft, on the other hand, has
recently extended and broadened its intellectual property indemnification provisions to stress
this comparative advantage over Linux. See Michael Kanellos, Microsoft Easing Customers’
Legal Stress, CNET News.com (July 22, 2003), at http://news.com.com/2100-1012-
5050986.html (last visited Feb. 12, 2004) (noting that “Microsoft has a new sales pitch for Linux
users: Buy our software and stay out of court.”). More recently, however, one vendor, Hewlett
Packard (“HP”), in response to user concerns about the SCO suit, began offering an
indemnification for Linux users who ran the operating system on HP’s hardware and met other
conditions. See HP Linux Indemnity Site, at http://.www.hp.com/wwsolutions/linux/
linuxprotection.html (last visited January 9, 2004) [hereinafter HP Indemnity] (describing HP’s
indemnity program, including requirement that it applies only to Linux purchased from HP or its
authorized resellers, which runs on HP hardware, and which customer has not modified).

407Id. at 406.

No. 2] OPEN-SOURCE SOFTWARE 693

the copyright rights.408 Even then, to be confident in granting the
indemnification, the central entity would need procedures to ensure that
contributed code is from a true author and does not carry a copyright
infringement risk.409 While difficult, these screening procedures could be
implemented with some degree of success. If implemented at the beginning of
a project, a trusted central entity could own all the copyrights in the
collaborative project with sufficient confidence to take the risk of granting
indemnification to enterprise customers.

This brings us back to the role of Collaborative Integrity—which is to
eliminate the central entity’s need to rely completely on programmer’s
entrustment. With the right of Collaborative Integrity, open-source
programmers could confidently assign their copyright ownership to the central
entity, knowing that they could enforce the open-source nature of the software
with Collaborative Integrity. For copyright related issues, the central entity
then has no need to overcome collective action problems, because it owns all
the copyrights in the project, putting it in a better position to deal with
infringement issues. Besides providing indemnification, the central entity
would be better positioned to participate in the legal process if the open-source
software is accused of infringing someone else’s intellectual property, be it

408In asserting that the best approach is for the central entity to take copyright assignments,

I acknowledge that there are a number of second best alternatives to outright ownership. In this
discussion, I am assuming that the central entity is also the aggregator and development leader
for the open-source software, or at least is coordinating and cooperating with the development
leaders. First, the entity could obtain indemnification from the individual contributors, and on
that basis offer an indemnification to enterprise customers. This, however, gives the central
entity a frail basis for its indemnification, because it is unlikely to take recourse against the
disperse development community. The entity will not want to alienate them, and their assets may
be insufficient. Second, the entity could have contributors grant licenses to the entity. From these
rights, the entity would issue the generally applicable open-source license. This basis is also
frail, because as long as the contributors are record owners of the copyright, they could grant
conflicting licenses. Putting aside the problem of the author’s reversion right in United States
copyright law, 17 U.S.C. § 203(a)(3) (2002) (enabling certain authors to terminate grant of a
copyright or rights under a copyright “at any time during a period of five years beginning at the
end of thirty-five years from the date of execution of the grant”), record ownership by the central
entity eliminates conflicting rights arising from the contributing developer after she contributes
the code, assuming that the developer is the true author and did not violate anyone else’s
copyright rights in contributing the code.

409The central entity has an important incentive to ensure that programmers assign the
copyright: blocking submittal access to the open-source repository housing the project until the
assignment is completed, submitted, reviewed and approved. See OpenOffice.org, Contributing
to OpenOffice.org, at http://www.openoffice.org/contributing.html (updated Sep. 10, 2003)
(noting that programmer must sign copyright assignment if their code is to be integrated into
open-source project). Beyond these formal mechanisms, one can imagine that a programmer
who submits code copied from others, thus endangering the open-source project by embedding a
future copyright infringement risk, if discovered, would be subject to sanctions from the
community directly—such as effectively blackballing the programmer from future project
participation.

694 UTAH LAW REVIEW [2004: 563

copyrighted material or a patent.410 While programmers might be willing to
trust a nonprofit central entity with their copyright assignment, they probably
would have less trust in a for-profit entity. Collaborative Integrity would
nullify that concern, allowing a broader array of open-source organization and
management structures.411 Many in the open-source community view greater
involvement by for-profit entities as important to the growth of open-source
software.412 Such entities are better positioned to reach certain markets, and
there are a number of open-source business models that have proved viable,
enabling entities to achieve commercial success without the traditional closed
source royalties-for-use software model. By facilitating centralized copyright
ownership and other new structures, Collaborative Integrity supports new
arrangements that help deal with infringement issues and other issues facing
open-source software. Foremost among the other issues facing open-source
software are warranties and liabilities. If a central entity owns all the
copyrights in the project, it is in a better position to grant some degree of

410On the flip side of this issue, although open-source software projects are probably less

likely to be litigious than traditional business concerns, centralizing copyright ownership would
simplify issues of standing for enforcing the copyright and open-source licenses based on the
copyright. In addition, this approach may particularly benefit the leaders of an open-source
project. Assume the central entity owns the copyright, rather than the individual project leaders
themselves. In the case of an infringement lawsuit against the open-source software, the leaders
may benefit to some degree from the interposed central entity, as they will not be personally
liable.

411If the primary issue were simply trust between the programmer and the central entity, an
alternative way to approach the problem is by contract between the for-profit central entity and
the programmer, where the central entity agrees to use copyright to uphold the open-source
nature of the software. While such an approach might approximate the beneficial effect of
Collaborative Integrity, it also carries with it the baggage that comes from copyright in software
and the license as a species of contract: potential lack of uniformity within the United States
under state contract law; the effect of such contracts in the cases of changes to the entity, such as
bankruptcy, merger or acquisition; classification issues for software-related transactions under
state contract law; and the potential for federal copyright preemption to vitiate license terms.
See generally Madison, supra note 245, at 276 (noting various issues that affect legitimacy of
licensing regime).

412Raymond, supra note 125, § 3 (discussing why open-source software “increasingly
poses . . . an economic challenge” and noting need for price structure “[u]nder the efficiency
seeking conditions of the free market”).

No. 2] OPEN-SOURCE SOFTWARE 695

warranty or liability coverage, because these typical licensing terms are often
demanded in the same class of situations where indemnification is important.413

Enforcement of the open-source approach is another issue. Collaborative
Integrity, in the hands of the programmers, acts as a supplemental enforcement
mechanism, backing up the central entity’s efforts. It constrains the central
entity, who will still license the software under a copyright-based open-source
license, by requiring its license to conform with Collaborative Integrity. It
similarly constrains users from violating Collaborative Integrity. As a disperse
group, the programmers might be thought to be ineffective at enforcement.414
But, being decentralized, they are also less subject to a failure of agency that
might result in the central entity privatizing the software or deviating from the
open-source approach.415 As the open-source movement grows, projects are
experimenting with new licenses and new forms to organize both legal rights

413Since warranties and liabilities sound in state law, an alternative approach to this issue is

specific state law exemptions for any implied warranties and liabilities when free or open-source
software is at issue. This approach has been implemented to a limited extent in relation to
UCITA. See supra note 257. If the open-source software is truly free, that is, there is no
distribution fee whatsoever, then this approach seems palatable, although, assuming that not
every state would enact such exemptions, it may result in patchwork coverage. But distribution
fees for enterprise versions of Linux can run into the four-figure range, see supra note 156
(citing Linux prices), sufficiently high to raise questions about the equitableness of exempting
all warranties and liabilities.

414This question also arises for moral rights’ role in preserving cultural and artistic heritage
for literary and artistic works. See Cotter, supra note 17, at 74 (discussing how “society that
endows artists with moral rights necessarily incurs costs related to enforcement . . . of those
rights” and these costs, in part, lead author to conclusion that perhaps moral rights cannot “be
justified an economic grounds as a means of correcting for a failure in the market for cultural
preservation”); see also Hansmann & Santilli, supra note 17, at 106 (noting existence of
“European statutes that protect and preserve those works that are considered important to
nation’s artistic heritage”).

415Agency failure by the central entity holding all copyrights could occur in varying
degrees of severity. If it tried to privatize the entire project, assuming no explicit contractual
promises to the developers to enforce the open-source approach, the contributing programmers
might be left with only pleas to equity. Less severe might be a central agency’s attempt to write
an anti-forking license—one that only allows modifications if they are sent back to the central
entity. See, e.g., Bruce Perens, The Open Source Definition, in OPENSOURCES, supra note 2, at
184 (describing how when Netscape released source code for its Web browser, which resulted in
Mozilla open-source project, Netscape implemented license (Netscape Public License (“NPL”))
that gave only Netscape right to make submitted modifications private—by reincorporating them
back into its propriety browser). The power to fork the project is important to project functioning
because it gives power to the voice of the distributed programming group if they disagree with
the project leaders. See Raymond, supra note 125, § 8. Netscape has since moved away from the
NPL to a new licensing scheme. Mozilla Relicensing FAQ, at http://www.mozilla.org/
MPL/relicensing-faq.html (last modified Dec. 7, 2003).

696 UTAH LAW REVIEW [2004: 563

and collaborative development.416 Mechanisms that support such
experimentation should be encouraged. Collaborative Integrity would
contribute to the experimentation because it is partitioned from copyright, an
approach suggested by the dualist moral rights implementations.

Reviewing the possible rationales for Collaborative Integrity illustrates
the insights from comparing moral rights to open-source software.
Collaborative Integrity would heighten incentives for open-source
programmers, express policy approval of their contributive activity, and make
possible new ways to organize collaborative effort, yet preserve an
enforcement right with the original contributors. The next step to assess
Collaborative Integrity is to estimate its contours, or at least assess the factors
that would determine a full-fledged right of Collaborative Integrity.

2. The Contours of Collaborative Integrity

Exploring the feasibility or desirability of Collaborative Integrity for

open-source software requires evaluating choices as to the content of the right.
Under one specification the right may be desirable; under another it may be
undesirable. I touch upon these choices in two sets. First, those features that
support collaborative software development and form the core of the right.
Second, the ancillary features necessary to define the right’s operation. I do not
completely develop a formal analysis for the second set, but suggest what, in
my view, are the most likely features. The choices for the first set are more
apparent, deriving from the core goal of the right—supporting collaborative
open-source software development.

The core of Collaborative Integrity should reconstitute the primary open-
source license conditions that enable open-source developers to create
software: source code availability, royalty-free use, modification and
redistribution, and reapplication of at least these same terms to redistributions.
These rights give the code the transparency that comes from source code
availability, and the ease of sharing from royalty-free rights to use, redistribute,
and modify. These rights should persist and “run” with the code—suggesting a
feature similar to the reapplication provision found in some open-source
licenses. How long they should run with the code is a question for the second
set of features. The most troubling issue for the core specification of
Collaborative Integrity is whether it should include the extension provision,
and, on a related note, how to effectively differentiate that provision from mere
modifications to the open-source software.

416See Mozilla Relicensing FAQ, supra note 415 (licensing source files under “triple

license” that includes GPL and LGPL); see also OpenOffice.org, Licenses, at
http://www.openoffice.org/license.html (updated Aug. 12, 2003) (describing OpenOffice
project’s use of dual licensing strategy).

No. 2] OPEN-SOURCE SOFTWARE 697

The extension provision is the feature of the GPL that seeks to extend the
GPL’s terms to software coupled to the GPL-licensed software in particular
ways.417 The context differentiates it from simply modifying and evolving the
open-source software. The extension provision envisions other,
non-open-source, previously existing software that becomes intimately coupled
with the open-source software. The fact that the two separate sets of source
code are operatively coupled (perhaps at the object code level), rather than
indistinguishably intermingled at the source code level, implies a continued
partition and technological separateness. Given this partitioning, the core
protective function of Collaborative Integrity should not extend to the
non-open-source software. That software was not developed in the open-source
tradition and does not carry the moral-rights-like attributes suggested by my
comparative analysis.418

The second set of choices for the contours of Collaborative Integrity
primarily concern the duration of the right, whether it should be waivable or
assignable, and the issue of remedy. The French right to respect implements a
strong form for these features. The right is perpetual, passing to the creator’s
heirs. It is neither assignable nor waivable.419 VARA, in the United States,
implements the opposite approach. The VARA right of integrity persists for
the artist’s life, and is waivable but not assignable. The VARA approach to
these features would likely be sufficient for Collaborative Integrity for several
reasons. First, most programmers outlive their code. The useful life of most
software is short compared to the useful life of fine art. Thus, there is likely no
reason for Collaborative Integrity to extend beyond the life of the programmer.
On the other hand, as long as the programmer is alive, she has a personality
expression interest in enforcing Collaborative Integrity, in particular to protect
her reputation.

Further, whether the right is assignable and waivable influences the
flexibility of the right. A waivable right facilitates both traditional software

417See supra text accompanying notes 209–217 (discussing GPL license and its attributes).
418In addition, the extension provision has been a lighting-rod for criticism of the open-

source approach. Collaborative Integrity need not be antagonistic to non-open-source software
because its primary goal is to facilitate and enable open-source as a competing, not
supplementing, regime of software development. Commentators acknowledge that both styles of
development have a place in the market and each fit with particular classes of applications.
Raymond, supra note 125, §§ 2, 10 (noting that argument for open-source software does not rest
on notion of closed source software as “wrong” and suggesting when software development
should be open and when closed).

419Although seemingly quite powerful, even the French right to respect is tempered by
doctrines that allow reasonable modifications in certain situations. See Kwall, supra note 25, at
13 (noting that “the French judiciary tends to enforce contracts allowing reasonable alterations
that do not distort the spirit of the creator's work, particularly with respect to adaptations and
contributions to collective works”).

698 UTAH LAW REVIEW [2004: 563

production and open-source production,420 and makes sense on that basis. The
programmer can waive the right if she makes the decision to work for a
traditional software concern. An assignable right goes beyond waiver. Besides
giving up her right to enforce Collaborative Integrity, the programmer transfers
the enforcement power to someone else. Following VARA, and at least from a
personality interest perspective, the right need not be assignable because the
programmer is the person most interested in protecting her personality
expression in her contributed open-source software.421 Finally, although
VARA defines violations of its right of integrity in such a way as to include the
Copyright Act’s infringement remedies, Collaborative Integrity seems to be
best served with exclusively a property rule injunctive remedy.422 Damages are
too speculative for open-source software because there are no market
transactions for software royalties to establish valuations. Disgorgement of the
violator’s profits from violating Collaborative Integrity might make sense, but
there will often be intractable problems to disaggregate an allocation of such
disgorged amounts among the contributing programmers on the project.423

Further analysis could produce a more detailed specification of the
contours of Collaborative Integrity.424 For this initial sketch, however, the

420Commentators generally acknowledge that both types of software production are likely
to persist. See, e.g., Bradford L. Smith, The Future of Software: Enabling the Marketplace to
Decide, in GOVERNMENT POLICY TOWARD OPEN SOURCE SOFTWARE 69, 70 (Robert W. Hahn ed.,
AEI-Brookings Joint Center for Regulatory Studies (2002)), at http://aei-brookings.org/
admin/pdffiles/phpJ6.pdf (last visited Jan. 8, 2004) (noting that “both open-source and
commercial software are integral parts of the broader software ecosystem”).

421At least, this is the case when the programmer volunteers her time to write and
contribute the code. Some open-source programmers, however, are paid to write the software,
and this posits the counterargument that perhaps the right should be assignable in those cases to
the employing entity.

422An injunctive remedy would most likely operate against distributors of non-conforming
software, that is, against software distributed without source, or for which the distributor
demanded ongoing royalties for use. A more difficult question is whether the injunctive power
should reach a user of such software, who might not have knowledge of the violations.

423Assumedly, in most cases an entire functioning project will be privatized, not just one
programmer’s code, unless the project is a sole programmer effort. Even with the difficulties of
allocating any disgorged amounts to a programming team, it would seem necessary to disgorge,
because leaving ill-gotten profits with a wrongly-privatizing person creates perverse incentives.
Allocation of disgorged amounts could perhaps follow copyright doctrines of joint authorship
and ownership as applied to an open-source project, but the applicability of the traditional
doctrines may be awkward given the unique nature of open-source development. See Severine
Dusollier, Open Source and Copyleft: Authorship Reconsidered, 26 COLUM.-VLA J.L. & ARTS
281, 292–94 (2003) (discussing authorship under open-source model).

424Other issues to be specified include whether there would be a notice requirement, i.e.,
would programmers have to specify in the software that it was covered by Collaborative
Integrity. In addition, is the question whether, as in VARA, 17 U.S.C § 106A(b), one has to be
an “author” under the Copyright Act in order to qualify for protection. Software is thought to
only qualify for “thin” copyright protection. This raises the question whether coverage of
Collaborative Integrity should be coterminous with coverage of copyright in computer program
source code.

No. 2] OPEN-SOURCE SOFTWARE 699

foregoing illustrates one set of rough dimensions for the right, intended to
show that a workable right is possible. Besides the feasibility inquiry, several
moral-rights-inspired reasons argue for Collaborative Integrity. These include
heightening incentives for programmers in light of the nascent nature of the
open-source approach, facilitating new institutional arrangements for the open-
source movement, and expressing policy approval of the movement’s
approach, methodology, and benefits to society in producing public goods
through private effort.

VI. CONCLUSION

Open-source software is a new order full of transposition and paradox.

Copyright licenses promote copying rather than prohibit it. Software teams
work better scattered around the world than housed in one place. Free software
has higher quality than sold software. The open-source phenomenon is part
ideological triumph and part opportunistic pragmatism. There are many facets
to this new phenomenon, many ways to better understand what originated it,
sustains it, helps it grow, and what may threaten it.

The movement finds its foundation in norms encoded in a nascent
copyright-based licensing scheme, which sets the stage for new forms of
collaborative, Internet-enabled, distributed software development. An
impressive, even stunning, array of software has resulted so far. The norms
stress source code availability, collaboration among project leaders, developers
and users, and a continuing legacy that the source code remain freely useable,
modifiable, and shareable. The norms emphasize freedom for programmers to
continue to do these things—things which have been denied them by the status
quo of traditional software development.

Open source is a modern phenomenon, but another movement with many
parallels originated over two hundred years ago in France. The system of droit
moral, or author’s moral right, grew through French jurisprudence in response
to that society’s felt necessity to protect and value creative works and the
authors and artists who produced them. In similar fashion, open-source
software has emerged to protect and value software transparency and freedom.
The resulting collaborative foundation has produced much of the infrastructure
software for the Internet. Open source is, in part, a response to the felt
necessities of our time. The parallels between the two systems are numerous
and exist at several levels. At the heart of both systems is the right for creators
to control the view that a work presents, to keep the work in a certain
beneficial state. This is the right of integrity in the civil law moral rights
tradition. In the open-source system, it is the Collaborative Integrity of open-
source software.

Moral rights, with its history and legacy, can help us better understand the
Collaborative Integrity in open-source software. Moral rights seek to protect

700 UTAH LAW REVIEW [2004: 563

the creator’s personality as embodied in the work. The open-source approach
similarly protects the transparency necessary to show the programmer’s
personality in contributing to a project. The moral right of integrity, in some
jurisdictions, may apply to software, thus raising questions whether it hurts or
helps the current copyright-based licensing approach to protecting open-source
software. From these two moral-rights-inspired insights, a third insight arises:
does the Collaborative Integrity in open-source software deserve protection as
a right of its own, just as the right of integrity developed separately from
pecuniary copyright in some civil law jurisdictions? These insights, and the
questions they raise, demonstrate how comparing the venerable moral rights
tradition to the open-source approach helps us better understand many aspects
of this new phenomenon and better understand the Collaborative Integrity in
the open-source movement.

