
CLAIMING COPYLEFT IN OPEN SOURCE
SOFTWARE: WHAT IF THE FREE SOFTWARE

FOUNDATION’S GENERAL PUBLIC LICENSE (GPL)
HAD BEEN PATENTED?

Greg R. Vetter†

2008 MICH. ST. L. REV. 279

TABLE OF CONTENTS

INTRODUCTION...280
I. BUSINESS METHOD PATENTS AT THE INTERSECTION OF SOFTWARE AND

LICENSING..286
II. CLAIMING COPYLEFT: FOSS LICENSING UNDER GPLV2 AS A PATENT

PROTECTED ACTIVITY ...288
A. A Hypothetical Claim for the GPLv2 Patent...............................289
B. Utility...291
C. Objective Disclosure ...292
D. Novelty and Statutory Bars..293
E. Non-Obviousness ..294

1. Differences Compared to the Prior Art of Software
 Licensing ...295
2. Secondary Considerations: Particularly “Unexpected

Results”...296
III. CLAIMED COPYLEFT: ENFORCEMENT MOMENTS IN THE FOSS

MOVEMENT..298
A. The FSF and Copyright Enforcement of GPLv2.........................299
B. Abhorrence of Patents for Software versus Abhorrence of Patents

for Licensing Methods...301
C. Non-Infringing Attribution-Only FOSS Licensing304
D. Some Potential Enforcement Moments for the GPLv2 Patent304

 † Assistant Professor of Law, University of Houston Law Center; Co-Director,
Institute for Intellectual Property and Information Law (IPIL); biography available at
http://www.law.uh.edu/faculty/gvetter. My background includes a Master’s degree in Com-
puter Science and nine years full-time work experience in the software industry. My thanks
to Katherine A. Franco for her research assistance. For helpful comments and discussion, I
thank Oren Bracha, John Golden, Craig Joyce, Robert Gomulkiewicz, and participants at the
4th Annual Symposium: What Ifs and Other Alternative Intellectual Property and Cyberlaw
Stories, held in March 2007 and sponsored by the Intellectual Property and Communications
Law Program at Michigan State University College of Law.

280 Michigan State Law Review [Vol. 2008:279

1. “Don’t Change This License!” (it is copyrighted)306
2. License Proliferation ..308
3. GPLv2 as Applied to the Linux Kernel310
4. “File-Level” Weak Copyleft ...312
5. Dual Licensing and Patent Law’s “Extra Element”

Infringement Rule..314
6. Microsoft’s Shared Source Licenses316

CONCLUSION ..318

INTRODUCTION

Patent law, by necessity, needs some way to evaluate inventiveness.
Otherwise, it will grant rights to advances not worth “the embarrassment of
an exclusive patent.”1 The innovations of version two of the Free Software
Foundation’s (FSF) GNU General Public License (GPLv2),2 arriving in
1991,3 could not, under U.S. patent law at that time, have been meaningfully
measured against patent law’s criteria, often referred to as the five elements
of patentability. The first element of patentability, statutory subject matter,
would have excluded the GPLv2’s copyright-based licensing technique as a
“business method.” While a “process” is statutory subject matter, a “busi-
ness method” was an exception to the broad potential scope of meaning in
the statutory word “process.”4 Business methods were not within the do-
main of patent protection,5 so the other four elements of patentability were
irrelevant.

 1. Graham v. John Deere Co. of Kan. City, 383 U.S. 1, 10-11 (1966) (discussing
Thomas Jefferson’s worry that “the embarrassment of an exclusive patent” must be corre-
lated to incentives for a non-trivial advance over the prior art).
 2. Free Software Found., GNU General Public License, version 2 (1991),
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html [hereinafter GPLV2].
 3. See GLYN MOODY, REBEL CODE: THE INSIDE STORY OF LINUX AND THE OPEN
SOURCE REVOLUTION 19, 26-29 (2001).
 4. 35 U.S.C. § 101 (2000) (“Whoever invents or discovers any new and useful
process, machine, manufacture, or composition of matter, or any new and useful improve-
ment thereof, may obtain a patent therefor, subject to the conditions and requirements of this
title.”).
 5. See State St. Bank & Trust Co. v. Signature Fin. Group, Inc., 149 F.3d 1368,
1375-77 (Fed. Cir. 1998) (while acknowledging the prior parlance of an exception to statu-
tory subject matter for methods of doing business, concluding, as to business methods, that it
was time “to lay this ill-conceived exception to rest”). The patent at issue in State Street
Bank claimed a computer system that calculated taxable asset values for a particular configu-
ration of entities sharing participation in pooled mutual funds. Id. at 1371; see also AT&T
Corp. v. Excel Commc’ns, Inc., 172 F.3d 1352, 1353-54, 1360-61 (Fed. Cir. 1999) (extend-
ing the holding of State Street Bank to a process claim for a long-distance messaging tech-
nique to facilitate charge billing).

Spring] Claiming Copyleft in Open Source Software 281

Nearly two decades later, at the time of this Article’s publication, pat-
ent law has changed. The U.S. Patent and Trademark Office (PTO) regu-
larly issues patents for activity that in 1991 would have been ineligible for
failing statutory subject matter. Today’s issuances go so far as to include
patents for methods designed to effectuate a legal outcome.6 A copyright-
based licensing technique, in 2008, might very well obtain patent issuance if
it satisfied the other elements of patentability.

As a path-breaking licensing concept, GPLv2 symbolized a movement
this Article will refer to as free and open source software, or “FOSS.”7 Im-
portant strands in the movement depend on ideas that, in combination, were
novel to the world of software licensing in 1991, namely requiring generally
available public source code disclosure and prohibiting use royalties.
Linked to these is the term “copyleft,” a pun of copyright and its institu-
tional values, but also a label for a mechanism of reciprocity or extension of
FOSS licensing terms, such as source code availability and the anti-royalty
provision, to intermixed or further-developed software.8 Embodied in a
license, these terms implement the FSF’s philosophy of functional self-

 6. Under statutory subject matter in patent law at the time of this Article, the viabil-
ity of claims covering human agency to effectuate a legal outcome may depend on how the
claim is structured. See In re Comiskey, 499 F.3d 1365, 1376-81 (Fed. Cir. 2007). The more
the claim covers activity only occurring within human thought, the more it may be character-
ized as a mental step or process that falls into the “abstract idea” exception to statutory sub-
ject matter. Id.
 7. The FOSS movement has spawned a variety of scholarship in the legal academy.
See generally Yochai Benkler, Coase’s Penguin, or, Linux and The Nature of the Firm, 112
YALE L.J. 369 (2002); David McGowan, Legal Implications of Open-Source Software, 2001
U. ILL. L. REV. 241, 268, 274 (noting the volunteerism underlying open source software
development); Greg R. Vetter, The Collaborative Integrity of Open-Source Software, 2004
UTAH L. REV. 563. FOSS scholarship also includes an increasing number of books. For an
early classic, see OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION (Chris
DiBona et al. eds., 1999). See also OPEN SOURCES 2.0: THE CONTINUING EVOLUTION (Chris
DiBona et al. eds., 2005); STEVEN WEBER, THE SUCCESS OF OPEN SOURCE (2004). A number
of practicing lawyers have authored books on FOSS licensing, and these provide helpful
background as well. See, e.g., LAWRENCE ROSEN, OPEN SOURCE LICENSING: SOFTWARE
FREEDOM AND INTELLECTUAL PROPERTY LAW 103-06, 126-28, 133-136 (2005) (discussing
the way in which FOSS licensing developed and how it works).
 8. In one sense, “copyleft” expresses the FOSS goal of protecting the general
availability of a software work, which is opposite copyright’s typical use for software—
generally protecting and prohibiting use of the work by others, while perhaps licensing some
narrow use for some number of users. In another sense, copyleft refers to a reciprocity rule
given in a FOSS license. See ROSEN, supra note 7, at 105-06. The FSF, involved in the
origination of the label “copyleft,” relates it to license term reciprocity with the purpose of
software freedom. See Free Software Found., What is Copyleft?, http://www.gnu.org/-
copyleft/ (last visited May 14, 2008) (“Copyleft is a general method for making a program or
other work free, and requiring all modified and extended versions of the program to be free
as well.”); see also Greg R. Vetter, “Infectious” Open Source Software: Spreading Incentives
or Promoting Resistance?, 36 RUTGERS L.J. 53, 129-30 (2004) [hereinafter Vetter, Infectious
OSS] (discussing GPLv2 copyleft).

282 Michigan State Law Review [Vol. 2008:279

determination and freedom with one’s computer.9 The FSF’s progenitor,
Richard Stallman, implemented these novel licensing concepts in GPLv2
toward his greater end of software freedom. An ingenious yet incomplete
document,10 GPLv2 became the license for important programs generated
by Stallman and others through FSF-affiliated software development pro-
jects. By its own language, GPLv2 also suggested itself for use on other
software.11

A variety of industry developments in the decades following GPLv2’s
arrival, combined with the license’s potent ideological force and clever use
of copyright law, propelled FOSS licensing into a prominent and path-
breaking place within information technology worldwide. Its force and
presence, and lightning-rod character, have grown over time, with GPLv2
remaining the dominant license in mind-share, if not code-share. In addi-
tion, all of this occurred without patent protection for GPLv2’s unique li-
censing technique.

This then raises the question: what might have occurred differently if
GPLv2’s licensing method had been patentable? In other words, if the U.S.
patent law of statutory subject matter in 1991 was sufficiently permissive,
and if the FSF and Richard Stallman successfully patented the novel licens-
ing approaches of GPLv2, would patent protection have altered the FOSS
movement’s two-decade trajectory through information technology and the
Internet? If so, can we estimate in what ways?

This Article’s assessment is that the FOSS trajectory would change
minimally, due to a variety of factors, including practical constraints on the
enforcement potency of patent claims to GPLv2, competition from other
types of FOSS licensing, and strategic considerations for a variety of play-
ers and camps within the FOSS movement. However, in the counterfactual,
license proliferation diminishes, and dual licensing is foreclosed.

Although no specific legal consequences flow from the mere label,
some patents are called pioneer patents because they open a new field or
make substantial advances beyond contemporary technology. Would the

 9. Free Software Found., The Free Software Definition, http://www.fsf.org/licens-
ing/essays/free-sw.html (last visited May 14, 2008).
 10. The primary incompleteness of GPLv2 was as much due to the evolution of U.S.
patent law as it was due to the license text. GPLv2 mentioned the possibility of patent pro-
tection for software covered by the copyright conditions of the license. However, GPLv2 did
not explicitly handle granting and terminating permissions to practice software patent rights.
This changed in version 3 of the GPL. See Free Software Found., GNU General Public
License § 11 (2007), http://www.gnu.org/licenses/gpl-3.0.html [hereinafter GPLV3]; GPLV3
FIRST DISCUSSION DRAFT RATIONALE 3-4 (2006), available at http://gplv3.fsf.org/gpl-
rationale-2006-01-16.ps (discussing the decision to explicitly license patents); see also Greg
R. Vetter, Open Source Licensing and Scattering Opportunism in Software Standards, 48
B.C. L. REV. 225 (2007) (analogizing the GPL version three revision process to a private
standard setting initiative).
 11. GPLV2, supra note 2, at pmbl. (“You can apply it to your programs, too.”).

Spring] Claiming Copyleft in Open Source Software 283

world think of GPLv2 as a pioneer patent?12 How would the license be
evaluated against the other elements of patentability? How would its inven-
tor, assumed here to be Richard Stallman, use his patent protection, and
against whom?

These last two questions structure this Article. Part I starts with patent
protection for business methods, not comprehensively, but to differentiate
the GPLv2 licensing method from other business method patents. This po-
sitioning is important to prepare for Part II, which examines GPLv2’s li-
censing technique against the elements of patentability. The Article con-
cludes, in the counterfactual, that some valid patent claims could have been
drafted that are embodied by the software licensing technique of GPLv2.

These claims would have been viable because GPLv2 likely meets the
other four elements of patentability under U.S. patent law without changing
history.13 GPLv2 easily meets the second element of patentability, the re-
quirement for utility. The same is true for the fifth element, the requirement
for objective disclosure supporting the claims. The closest questions are
with the third element, novelty and the statutory bars, and the fourth ele-
ment, the requirement for non-obviousness. These are evaluated against the
prior art, which would generally include non-secret licensing techniques
before Richard Stallman invented GPLv2, which, for discussion, this Article
assumes to be in 1991.14 While a comprehensive evaluation of such “prior
art” is not possible in the scope of this Article, it seems likely that GPLv2
was novel in a patent law sense, meaning that it would have satisfied the
third element of patentability, assuming no barring events (an assumption
necessary to continue the hypothetical).

Obviousness is a closer call. Licensing techniques in use in 1991 may
raise obviousness concerns, particularly practices such as sublicensing and
grant-back clauses. Without a full prior art review, the obviousness evalua-
tion is truncated to its primary inquiry of asking whether a skilled artisan

 12. The parlance of “GPLv2 as a pioneer patent” or “the GPLv2 patent” takes liber-
ties with a more correct statement of counterfactual patent law protection covering GPLv2.
However, this Article adopts this loose parlance as necessary throughout the Article for
readability. The more precise concept is that the patent right starts with what is recited in a
claim near the end of the issued patent instrument. In the hypothetical case of this Article,
that claim should cover the technique(s) implemented by the GPLv2 license document, and
would be thought of as a “process” claim from a statutory subject matter perspective. The
embodiment of this process claim would occur when someone uses the GPLv2 license
document by applying it to software. The implications that follow for invalidity based on
prior art and infringement are discussed in Parts II and III.
 13. While FOSS is a worldwide phenomenon, scope constraints limit the analysis of
the counterfactual to U.S. law.
 14. This assumption is based on the date of the copyright notice for GPLv2. See
GPLV2, supra note 2. The date of invention is probably earlier by some small number of
years. See MOODY, supra note 3, at 26-30. If so, that is not critical to the Article’s analysis
since it does not seek to precisely define the dates establishing prior art and barring events.

284 Michigan State Law Review [Vol. 2008:279

would find the differences between the claimed invention and the prior art
to be obvious.15 However, obviousness has a secondary inquiry, which
looks at considerations external to the claimed functionality. These include
such notions as “teaching away” from what is claimed, unexpected results,
and “long felt” need.16 The success of GPLv2 within the remarkably suc-
cessful FOSS movement indicates that the secondary considerations point to
a finding of non-obviousness.

Since the third and fourth elements of patentability are particularly
sensitive to claim language and scope, the Article will present one sample
hypothetical claim while recognizing that this is both an overly narrow and
overly broad approach. It is narrow because basing the analysis on one
sample claim ignores the typical patent drafting technique of fashioning a
variety of claims varying in scope.17 It is overly broad because the claim
scope has not been fashioned against a rigorous prior art evaluation, and
thus might be too broad to be valid. The sample claim is undoubtedly im-
perfect, and others may very well see ways to improve its coverage of
GPLv2.

Throughout the analysis of Part II, one goal is a rough assessment of
the likelihood of obtaining patent protection for some claims of non-trivial
scope. Another goal, however, is to note the perspective cast on FOSS li-
censing by patent law’s criteria for measuring inventiveness. A great chal-
lenge in patent law is to make these criteria sufficiently objective to allow
evaluation by the courts and the PTO. While imperfect, patent law’s ele-
ments of patentability provide such a framework. The Article argues, in
essence, that GPLv2 floats through these criteria with only slight worries
about the obviousness inquiry. If correct, this is a testament to GPLv2’s
inventiveness and its contribution to FOSS, software licensing, and informa-
tion technology.18

The counterfactual possibilities for the second question are less
bounded than the first. Estimating what parties would do if they had a pat-
ent that covers an activity or technology in the real world may seem easy—
sue infringers, or at least threaten suit and try to license. A related choice
might be whether to enjoin the infringer and keep the market closed (often

 15. 35 U.S.C. § 103 (2000).
 16. Graham v. John Deere Co. of Kan. City, 383 U.S. 1, 17-18 (1966).
 17. Phillip M. Pippenger, Prosecuting Patents with an Eye toward Enforcement, 910
PLI/PAT 1239, 1239, 1245 (2007) (discussing the need for and methods to achieve a “care-
fully tailored claim set” anchored in both process and product statutory subject matter).
 18. While a variety of instrumental or incentive-based theories have been advanced
to support the patent system, one theory in particular emphasizes the role an issued patent
might have to reflect positively on a technology. See Clarisa Long, Patent Signals, 69 U.
CHI. L. REV. 625, 635, 646-49 (2002) (proposing that facilitating the option to credibly pub-
lish information is an important role for the patent system).

Spring] Claiming Copyleft in Open Source Software 285

the answer for a competitor that infringes) or license the infringer regard-
less.

These choices apply to only a small percentage of patents because
most patent claims do not cover anything in the real world. Thus, for com-
mercialization purposes, these patents have no value.19 For prior art pur-
poses, they have value, but not in a direct wealth-generating sense. The
U.S. patent system expressly allows filing a document that states what a
patent discloses, called a statutory invention registration (SIR).20 The SIR
has no claims, but its disclosure places technology into the prior art.21 This
ensures that no one in the future can obtain patent protection for information
the SIR discloses without further developing the technology. This type of
publication value also occurs with general publication or dissemination of
knowledge or technology. GPLv2 has sufficiently wide dissemination to
count as prior art from sometime in the early 1990s, so this part of the story
is not counterfactual, but actual.

Thus, the analysis, by assuming a hypothetical GPLv2 patent, also as-
sumes that infringing real-world activity occurs, since a great number of
FOSS programs have applied the GPLv2. In addition, many other FOSS-
form licenses have imitated the GPLv2, any deployment of which might
also be infringing activity.

Given the assumption of a patent for such software licensing with po-
tent claims, what would Richard Stallman and/or the FSF have done with
patent protection for GPLv2? Such a question involves the dynamics of the
entire information technology industry, all of which the FOSS movement
has impacted.22 It includes contrasting ideologies symbolized by Richard
Stallman and the FSF, as compared to other groups willing to entangle
FOSS with commercial interests to a greater degree. FOSS licensing can
make strange bedfellows and has gathered corporate advocates as well
known as IBM, even though at first glance, the FOSS premise of open,
shareable source code is in opposition to the type of traditional software
licensing approaches IBM championed in earlier decades.

 19. Mark A. Lemley, Rational Ignorance at the Patent Office, 95 NW. U. L. REV.
1495, 1497, 1508, 1531-32 (2001); see generally John R. Allison et al., Valuable Patents, 92
GEO. L.J. 435, 437 (2004) (arguing, among other points, “that the easiest way to discover the
characteristics of valuable patents is to study litigated patents”).
 20. 35 U.S.C. § 157.
 21. See USPTO, 1111 SIR Publication and Effect—1100 Statutory Invention Regis-
tration (SIR) and Pre-Grant Publication (PG Pub), available at
http://www.uspto.gov/web/offices/pac/mpep/documents/1100_1111.htm (last visited May
14, 2008) (“[A] published SIR will be treated the same as a U.S. patent for all defensive
purposes The waiver of patent rights to the subject matter claimed in a statutory inven-
tion registration takes effect on publication (37 CFR 1.293(c))”).
 22. See Kim Polese, Foreword: Source is Everything, in OPEN SOURCES 2.0, supra
note 7, at x.

286 Michigan State Law Review [Vol. 2008:279

The counterfactual proceeds with Richard Stallman and/or the FSF as
the patent owner, and changes only one major historical variable: subject
matter eligibility for patent protection. The analysis would be dramatically
different, and of greater length, if it changed a second variable and put own-
ership of the claimed method elsewhere, such as with Microsoft. Recogniz-
ing this, the analysis may occasionally refer to the implications of hypo-
thetical alternative owners.

Patents are often enforced against a variety of targets. Thus, to organ-
ize Part III, and remove from pure speculation what one person or group
might do, this Article proceeds by cataloging some of the more prominent
events or situations with structural or institutional consequences for the
FOSS movement. These are cases where FOSS licensing approaches might
be subject to suit under the hypothetical GPLv2 patent. Examining each
will provide a sense of the possibilities, considerations, and constraints
channeling enforcement at each moment.

The Article concludes by emphasizing the themes above, and noting
that patent protection for FOSS licensing techniques is more than a hypo-
thetical in 2008. While they do not contain pioneering concepts of broad
scope like the GPLv2, a small but growing number of patent applications
are simmering at the PTO and claim licensing techniques arising from the
FOSS movement.23 What if these patents issue? How will they be enforced
in the future? The FOSS movement likely will not wait two decades for
answers to these questions.

I. BUSINESS METHOD PATENTS AT THE INTERSECTION OF SOFTWARE AND
LICENSING

When the United States Court of Appeals for the Federal Circuit
eliminated the “business methods” exception to the domain of patents, it
declared the exception “ill-conceived.”24 Categorizing statutory subject
matter leads to metaphysical debates of an intractable nature.25 In the period
covered by the counterfactual, the primary controversies in statutory subject

 23. See, e.g., Method and Apparatuses for Reviewing General Public Licenses, U.S.
Patent Pub. 2006-0288421 (filed June 15, 2005) (disclosing a method and apparatuses for
detecting conflicts in licensing terms between a first general public license corresponding to
a first group of code and a second general public license corresponding to a second group of
code). See infra note 125.
 24. State St. Bank & Trust Co. v. Signature Fin. Group, Inc., 149 F.3d 1368, 1375-
77 (Fed. Cir. 1998).
 25. In re Nuijten, 500 F.3d 1346, 1367 (Fed. Cir. 2007) (“[T]he outer limits of statu-
tory subject matter should not depend on metaphysical distinctions such as those between
hardware and software or matter and energy, but rather with the requirements of the patent
statute: is an invention a ‘process,’ ‘machine,’ ‘manufacture,’ or ‘composition of matter’
. . . .”).

Spring] Claiming Copyleft in Open Source Software 287

matter arose from biotechnology and software. Inventions in each technol-
ogy are claimable as either processes or structures. Importantly, neither is
typically so abstract26 as to operate mostly within human thought. Software,
though abstract, can be easily claimed in relation to computing structure. In
fact, being patented as a “structure” was software’s first avenue into statu-
tory subject matter, the second being its inherent correspondence with the
statutory word “process.”27 As business increasingly computerized its proc-
esses using information technology, the historical “business methods” ex-
ception fell before this wave of automation and patenting related to the
automating technology.28

The approach of this counterfactual will shortly render the subject
moot because it will stipulate the first element of patentability to facilitate
the analysis. Before that departure, however, there is a need to differentiate
the availability of patent protection for computing methods from protection
for activity such as FOSS licensing.

Patent protection for software, as opposed to licensing methods, wor-
ries the FOSS movement, but these concerns are not this Article’s focus,
except to note an area of overlap—license enforcement is sometimes auto-
mated using various technologies, some of which might be categorized un-
der the broad rubric of digital rights management. Consider this “software
patent” example: claiming an innovative method to sort information in a
particular technological context.29 Such a patent’s claims will be written
with varying degrees of dependence on underlying computing structure.
Alternatively, a patent covering, for example, a method of arbitration, may
have some claims that describe the method without reference to any struc-
ture.30 Such claims recite the steps to a process that activates and imple-

 26. Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980) (noting that “[t]he laws of
nature, physical phenomena, and abstract ideas have been held not patentable” (citing Parker
v. Flook, 437 U.S. 584 (1978))).
 27. Dan L. Burk, The Problem of Process in Biotechnology, 43 HOUS. L. REV. 561,
564, 589-90 (2006) (noting that “[w]hether contemplating patents in practice or in theory,
attorneys and scholars typically divide the universe of patents into product patents, which
encompass the categories of machines, compositions, and manufactures; and process patents,
which cover the odd category out—that of new and useful processes” toward observing that
software patents, even more directly than biotechnology structures, correspond to direct
informational patenting).
 28. In the pre-computer era, business methods were not related to software. A clas-
sic example is a method for accounting, or a technique to demonstrate a product. Only later,
when software began to underlay more business operations did patent law for business meth-
ods and for software begin to merge and influence one another. See generally State St. Bank
& Trust Co., 149 F.3d at 1375; AT&T Corp. v. Excel Commc’ns, Inc., 172 F.3d 1352, 1353-
54, 1360-61 (Fed. Cir. 1999).
 29. See U.S. Patent No. 7,103,603 (filed Mar. 28, 2003) (entitled “Method, appara-
tus, and system for improved duplicate record processing in a sort utility”).
 30. In re Comiskey, 499 F.3d 1365, 1379-81 (Fed. Cir. 2007).

288 Michigan State Law Review [Vol. 2008:279

ments thought (and perhaps corresponding action) among a group of hu-
mans. This approach may be too abstract to meet the statutory subject mat-
ter element because the steps are all “mental”—they occur in human
thought.31 The potential overlap of patenting for a licensing method with
software is when software is used to enforce a licensing approach. Claims
can be mostly about the licensing terms, but can include ele-
ments/limitations of computing structure that will enforce, present, or relate
to the terms. For statutory subject matter, this will likely validate the claims
for the first element of patentability.32

Thus, if the copyleft licensing techniques of GPLv2 were conceived in
2008, patent law would readily allow the crafting of some claims that meet
the statutory subject matter. These claims would be potent in that they
would minimally enmesh with computing structure, and thereby avoid the
mental steps notion of an excluded abstract idea. With the increasing in-
volvement of software to handle licensing terms, much activity might fall
within the patent’s enforcement power. This could include not only com-
plex technologies, such as digital rights management for license enforce-
ment, but also simpler involvement, such as the increasing propensity of
software to present licensing terms to the user/installer and to take and store
an indication of assent.

To proceed as simply as possible, this Article will model the GPLv2
patent claims near the edge of what would be considered statutory subject
matter at the time of the Article’s publication. The one sample claim given
below is not encumbered with artificially inserted structure in order to meet
the statutory subject matter. By the magic of the counterfactual, that first
element of patentability will be stipulated.

II. CLAIMING COPYLEFT: FOSS LICENSING UNDER GPLV2 AS A PATENT
PROTECTED ACTIVITY

Copyleft, as a reciprocity mechanism, must propagate terms through
successive revisions of a program in order to facilitate its continued trans-

 31. Patent law has a subject matter exclusion that can be characterized as a specific
type of the general “abstract idea” exception to statutory subject matter. This is the “mental
steps” doctrine, where a claim reciting only process steps occurring mostly within human
thought are not eligible. Id. at 1377-78.
 32. In many situations, entangling an abstract idea such as a mental process with
structure will allow the claimed method to meet the statutory subject matter requirement.

When an unpatentable mental process is combined with a machine, the combina-
tion may produce patentable subject matter While the mere use of the machine
to collect data necessary for application of the mental process may not make the
claim patentable subject matter . . . these claims in combining the use of machines
with a mental process, claim patentable subject matter.

Id. at 1379.

Spring] Claiming Copyleft in Open Source Software 289

parency and sharing.33 The FSF provides a description of the process as
follows:

To copyleft a program, we first state that it is copyrighted; then we add distribution
terms, which are a legal instrument that gives everyone the rights to use, modify,
and redistribute the program’s code or any program derived from it but only if the
distribution terms are unchanged. Thus, the code and the freedoms become legally
inseparable.34

In the GPLv2, the distribution terms require that source code be avail-
able and prohibit use royalties.35 In patent law terminology, several items36
come together in cooperative combination to achieve a new end. A variety
of other topics in GPLv2 will not be the focus in this Article or, more im-
portantly, with the sample claim.37 The items covered by the GPLv2 pat-
ent’s claim(s) are central to FOSS’s novel approach to software licensing
and its resulting freedoms and development advantages. In other words, the
claims, particularly claim 1, should cover the heart of GPLv2.38

A. A Hypothetical Claim for the GPLv2 Patent

Below is a sample approach to illustrate the theoretical content of a
patent claim embodied by GPLv2. This is written as claim 1, which patent
law envisions as the broadest claim among the several claims that typically
issue in a patent.

 33. See McGowan, supra note 7, at 258-59 (describing the reciprocity of copyleft as
a “web of blocking copyrights”).
 34. Free Software Found., What is Copyleft?, supra note 8.
 35. GPLv2, supra note 2, §§ 2(b), 3.
 36. By using the word “items” here, the Article is avoiding a semantic issue in pat-
ent law about what term to use to describe a subset of the claim: element or limitation. Suf-
fice to say, either term conveys that some of the claim language describes one part of the
items that come together in the cooperative combination that is the patent claim.
 37. Items from GPLv2 not included in the claim include, among others, provisions
prohibiting discriminatory licensing, provisions disclaiming warranties and indemnification,
and provisions dealing with certain technical details about making source code available.
See GPLv2, supra note 2 (listing sections of the license not involved in the hypothetical
claim).
 38. GPLv2 has been imitated in a variety of ways. One example of these replicas is
an innovative effort to simplify the GPLv2, called the SimPL. Robert Gomulkiewicz, Simple
Public License (SimPL), http://www.law.washington.edu/CASRIP/License (last visited May
14, 2008) (“The SimPL is intended to demonstrate a simpler approach to the GPL that
achieves the same goals. Above all else, it is intended to be read and understood by the
average open source developer, who may have only a limited understanding of the words of
the GPL.”). Earlier versions of the claim given in this paper, as well as the example claim
used to present the analysis of this paper at the symposium generating this Article, were
based on SimPL as a very helpful first step toward capturing the essence of GPLv2 in the
format of a patent claim.

290 Michigan State Law Review [Vol. 2008:279

1. A method of licensing software from a licensor to at least one licensee, com-
prising:
(a) issuing software by the licensor in source or object code form for any li-
censee to undertake activity with the software;
(b) the activity comprising at least one item of any of: (i) non-modifying ac-
tivity, which comprises copying, running, or using the software; (ii) modifying
activity, which comprises modifying or making derivative works of the soft-
ware wherein incorporated programming comprises intermixed software; or
(iii) distributing activity with or without any other activity;
(c) the activity not being conditioned on usage royalty payments from any
licensee to licensor;
(d) conditioning the software issuance such that any licensee activity with the
software must comply with license terms; and
(e) license terms comprising: (i) a non-distribution permission set of condi-
tions, wherein if the licensee does not distribute the software, the activity is
non-restricted; and (ii) a distribution permission set of conditions, wherein upon
issuance of the software by the licensee’s distribution of the software:
 (A) the licensee must make source code available to its subsequent licen-
sees;
 (B) the licensee must not condition its issuance of the software on receipt of
royalty payments from any subsequent licensee for activity with the software;
 (C) the licensee must condition the subsequent licensee’s activity on the
license terms; and
 (D) the licensee must license intermixed software under the license terms
when the licensee engages in modifying activity.

As mentioned above, the sample claim is undoubtedly imperfect, and others
may very well see ways to improve its coverage of GPLv2, or see alterna-
tive drafting approaches to maximize the scope, and, thus, maximize in-
fringement coverage, of the claim, while minimizing invalidity problems.39

Having presented the sample claim and stipulated to the first element
of patentability, Section II.B discusses patent law’s requirement that the
claimed invention have utility.40 Section II.C discusses the requirement that
the patent application provide sufficient objective disclosure to support the

 39. As the first claim in the hypothetical patent, the sample claim consciously seeks
to recite a minimal number of elements/limitations. Below are samples of possible depend-
ent claims:

2. The method of claim 1, wherein the license terms further comprise that licen-
see must leave in place any copyright or other intellectual property notices in the
software source code or in its associated files.
3. The method of claim 1, wherein the distribution permission set license terms
further comprise that licensee must document any changes made to the source code
of the software by annotations in the source code of the software.

 40. 35 U.S.C. § 101 (2000).

Spring] Claiming Copyleft in Open Source Software 291

claims.41 After these two easily met requirements are satisfied, the remain-
ing sections examine the prior-art-based elements of patentability.

B. Utility

The GPLv2 patent easily meets the utility requirement. United States
patent law authorizes the PTO to issue patents for “useful” inventions. Like
the first criterion, statutory subject matter, the utility criterion has dimin-
ished as a barrier to patent protection. A de minimis practical utility will
suffice. The claimed technology must provide some practical, identifiable
benefit. The utility need not meet any particular moral or other standard,
but the claimed invention must do something to accomplish its described
purpose.42

A counterexample illustrates the utility requirement. The PTO regu-
larly rejects patent applications for perpetual motion machines due to lack
of utility. The PTO rejects these applications because recognized science
disproves the possibility of usefulness for these devices.43

None of these concerns affects the GPLv2 patent. In 1991, there was
recognition of the usefulness of source code availability for interoperability
and technical transparency. Sharing software also had a place in the soft-
ware ecosystem of that era, although the sharing mechanism was different.44
These software licensing models did not envision sharing as collaborative
software development like that of the FOSS movement, but such precursor
practices were clearly useful under patent law’s low utility threshold.

Additionally, with the benefit of nearly twenty years of actual history,
FOSS licensing clearly meets patent law’s conception of utility. Its ap-
proach continues to challenge conventional paradigms about software de-

 41. Id. § 112.
 42. ROGER E. SCHECHTER & JOHN R. THOMAS, INTELLECTUAL PROPERTY: THE LAW
OF COPYRIGHTS, PATENTS AND TRADEMARKS 315 (2003).
 43. Id. at 318.
 44. Before the FOSS movement rose to prominence, there was an active trade in
freeware and shareware software. See, e.g., INT’L INST. OF INFONOMICS, UNIV. OF MAAS-
TRICHT & BERLECON RESEARCH GMBH, FREE/LIBRE OPEN SOURCE SOFTWARE: SURVEY AND
STUDY: PART III—BASICS OF OPEN SOURCE SOFTWARE MARKETS AND BUSINESS MODELS 11-
12 (2002), available at http://www.berlecon.de/studien/downloads/200207FLOSS_Bas-
ics.pdf, report overview page, available at http://www.infonomics.nl/FLOSS/report/ [herein-
after FLOSS Basics] (presenting a two-by-two classification scheme for software using axes
of source code availability and royalties, resulting in the following four categories: share-
ware/freeware, commercial open source software, noncommercial open source software, and
proprietary/commercial software). These programs were usually developed and written in a
similar vein as single-programmer FOSS projects. Hobbyists and tinkering programmers
built interesting or useful software and then offered it, typically in object code form, to others
free of charge, or in the case of shareware, for a de minimis fee. Compared to the FOSS
movement, what was missing was the distributed collaborative development model enabled
by FOSS licensing.

292 Michigan State Law Review [Vol. 2008:279

velopment methodologies and sources of innovation in the information
technology industry. The software resulting from this movement occupies
an important place within the industry’s ecology, particularly within the
Internet. In fact, much of the Internet’s enabling software came about in
conjunction with the FOSS movement. The movement successfully scaled
with the Internet’s growth due to its source code transparency and shareable
nature, both being features of its licensing approach.

C. Objective Disclosure

The objective disclosure element of patentability is completely within
the control of the patent applicant since she prepares the disclosure docu-
ments that must accompany the original patent application. As a result, this
analysis will stipulate that the disclosure requirement has been met.

As a legal document, an issued patent has differing sections, including
the claims and supporting information,45 all of which together form the
document’s disclosure. One purpose of this information is to populate the
public domain when the patent expires. Another is to enable artisans to
make and use the invention. As such, the disclosure requirement has multi-
ple sub-tests, one of which is “enablement.”46 Functioning alongside a re-
lated requirement, the “written description” test, enablement asks whether
the patent document gives a person of ordinary skill in the technology
enough information to make and use the claimed invention without undue
experimentation.47 Though there are two other sub-tests, they are of lesser
import for this Article’s purposes.48 In any case, if a claim fails to meet any
one of the sub-tests, it is invalid.

 45. The preceding pages before the claims, typically a handful to several dozen,
support the patent’s exclusory right and allow society to benefit from the technology dis-
closed in the patent. When the patent expires, it leaves a document that gives no one a right
to exclude, but which may be significant for its technical content. SCHECHTER & THOMAS,
supra note 42, at 393-95. The U.S. patent system has over seven million issued patents at the
time of this writing. See United States Patent and Trademark Office, Table of Issue Years
and Patent Numbers, for Selected Document Types Issued Since 1836,
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/issuyear.htm (last visited May 14, 2008)
(displaying that utility patent numbers in 2008 are well above the seven million threshold).
This creates a vast database of technical information even though many of these issued pat-
ents are expired. For this trove to be useful, each patent has to provide sufficient information
to allow artisans to practice the claimed technology.
 46. SCHECHTER & THOMAS, supra note 42, at 394-98.
 47. Id.
 48. The other two sub-tests under the disclosure requirement are “best mode” and
“definiteness.” With best mode, the patentee must disclose her best way of practicing the
claimed technology, if she had one. The definiteness requirement applies to the claims—
they must be sufficiently specific to provide some sense of the boundary of the invention.

Spring] Claiming Copyleft in Open Source Software 293

In order for the GPLv2 patent to meet the objective disclosure re-
quirement, this requires a sufficient explanation to a software licensing pro-
fessional of that era of how to implement and practice the claimed method
of licensing, and requires specifying if there were any preferred or best
modes of implementing its claimed method. This is inherently achievable,
although the GPLv2 license document does not necessarily accomplish this
task alone. Assume an experienced patent attorney prepares the application.
As input, she will start with the GPLv2 license and any other explanatory
documents used in its development to prepare the disclosure of the original
application. The typical approach may also include interviewing the inven-
tor in addition to reviewing the inventor’s documents and records. For a
commercially valuable patent, the originally-filed disclosure will likely be
faced with decades of scrutiny, so the incentives to provide sufficient in-
formation are high.

D. Novelty and Statutory Bars

Utility is a low threshold, and disclosure is under the applicant’s con-
trol, but the novelty requirement brings with it the possibility of surprise.
Novelty asks whether a single prior art reference has or discloses what the
claim recites. If so, patent law says that the prior art reference renders the
claim invalid by anticipating the claim. The word “anticipate” in this con-
struct is a term of art, meaning that the reference has, in itself, all of the
elements/limitations of the claim.49

Statutory bars relate to novelty in that a reference must also anticipate
the claim in order to render the claim invalid. Below this high-level de-
scription, there are a host of details distinguishing novelty from statutory
bars under U.S. law, many of which relate to timing questions about what
dates count for what purposes.50 These details will not make a difference
here, since the analysis necessarily takes a general approach.

 49. SCHECHTER & THOMAS, supra note 42, at 364-65.
 50. U.S. patent law measures novelty from the date of invention, but measures statu-
tory bars from a date keyed to the applicant’s filing date (although what that date is may also
require a legal inquiry, depending on the procedural course of the patent prosecution). Id. at
323-26. The patent statute says that even if no one else has developed the claimed technol-
ogy before an inventor, the inventor may be prohibited (barred) from using the patent system
to protect the technology if the inventor commercializes the technology in particular ways
more than one year before filing for a patent. 35 U.S.C. § 102(b) (2000). The most common
barring activities include: (i) using the claimed technology for commercial ends; (ii) selling
or offering to sell the technology; and (iii) publishing the technology. The statutory bars
support two important policies for patent law: promoting prompt disclosure of newly discov-
ered technology and limiting the period of control over patented technology. SCHECHTER &
THOMAS, supra note 42, at 325-27.

294 Michigan State Law Review [Vol. 2008:279

The novelty requirement may bring surprise because the applicant and
the PTO may not discover all prior art at the time of the application. Prior
art discovered years after the patent issues, and which was not uncovered at
the time of the application, might help invalidate the claimed invention. In
fact, due to the intense search efforts during patent litigation, prior art is
often discovered that was not before the PTO.

This Article will not evaluate the prior art using a search as might
guide the PTO or a court in litigation. Even without such a prior art search,
however, this Article posits a high likelihood that the GPLv2 patent would
have some claims not anticipated by the prior art. This is in part an anecdo-
tal estimate based on the author’s involvement with computing beginning
before GPLv2. In part it is also hindsight—as the FOSS movement has
grown, it has attracted increasing scrutiny and scholarship, which has yet to
unearth clearly anticipating licensing methods. The estimate also relies on
the nature of patent claims—adding more elements/limitations decreases the
probability that a prior art reference anticipates. For example, the two de-
pendent claims shown in footnote 39 are each harder to anticipate than sam-
ple claim 1 because they are more specific, i.e., they add more ele-
ments/limitations.

E. Non-Obviousness

The gist of the non-obviousness requirement comes from the plain
meaning of the word “obvious:” do not grant the patent right for claimed
technology that is obvious.51 In other words, non-obviousness requires a
technical advance greater than a merely trivial or minor improvement.
Evaluating obviousness, however, is easier said than done. In order to assist
the inquiry, patent law compares the claim to the prior art.52 The compari-
son is similar to the anticipation test for novelty, but multiple prior art refer-
ences can work together to invalidate the claim under obviousness.53 In
novelty and the statutory bars, a single prior art reference must disclose
what the claim recites. In other words, the novelty inquiry frames the claim
as a composite of cooperative elements and determines if any single refer-

 51. SCHECHTER & THOMAS, supra note 42, at 369-71.
 52. For a reference to be “prior art,” it must fall into one of the statutorily-defined
categories, and be “prior”—a timing and date-pegging question that itself may need legal
inquiry to answer. Id. at 371-73. Moreover, the prior art must be “analogous,” one meaning
of which is that it is from the “field” of the invention. Id. For the GPLv2 patent, that field
will be deemed to be the practice of software licensing. To see how this might impact the
analysis, if the “field” were expanded to include all information licensing, then all music or
literary work licenses would be included. This vastly increases the potential universe of
prior art, increasing the chances of finding more prior art references that can support the
obviousness argument to invalidate the claim.
 53. JANICE M. MUELLER, AN INTRODUCTION TO PATENT LAW 189-90 (2d ed. 2006).

Spring] Claiming Copyleft in Open Source Software 295

ence has all the elements. In evaluating obviousness, on the other hand,
multiple prior art references can supply the elements. Even if no single
reference combines the elements as claimed, the claim might still be invalid
if an artisan in the technology would find it obvious to make the claimed
combination.

Improper hindsight occurs when the post-invention knowledge of the
claimed technology’s workings causes the inquiry to veer too readily toward
a finding of obviousness.54 Objective criteria to prevent hindsight have been
a challenge to patent law, and likely always will be, due to the inherent na-
ture of the hindsight phenomenon. Post-invention knowledge of a different
sort, however, can also influence the obviousness inquiry. Namely, the so-
called “secondary considerations,” which look beyond the artisan’s view of
the differences between the prior art and what is claimed, can account for
effects of the technology after the invention and conceptions about what
was invented before the invention.55

1. Differences Compared to the Prior Art of Software Licensing

This Article’s analysis estimates that most software licensing profes-
sionals with extensive experience before GPLv2 would count all of the ele-
ments/limitations of the GPLv2 patent’s claims as present, or mostly pre-
sent, in the prior art of software licensing. Source code licensing existed,
but sometimes with secrecy conditions. Licensing of both source and object
code in a publicly or generally available manner also existed, both with and
without secret source code, and with and without conditions on use and/or
redistribution. The license agreements of the time existed to control royalty
rates, and some of these would specify that software be distributed without
charging royalties. These practices all operated at a time when the domi-
nant software licensing model consisted of secret-source code, and charging
royalties for proprietary software.

Subsequent licensing was, and is, common under the label “sublicens-
ing.” The label covers a variety of practices within proprietary licensing,
each of which may be specifically or broadly defined. For example, often-
times a distributing licensee receives a right to sublicense to other entities,
but the sublicense occurs under a fully or partially specified end-user license
agreement (EULA). Other methods eschew this approach and specify broad
provisions that the sublicense must meet, leaving the implementation details

 54. On the hindsight bias effect on patent law’s obviousness determination, see
Gregory Mandel, Patently Non-Obvious II: Experimental Study on the Hindsight Issue Be-
fore the Supreme Court in KSR v. Teleflex, 9 YALE J.L. & TECH. 1 (2007), and Gregory N.
Mandel, Patently Non-Obvious: Empirical Demonstration that the Hindsight Bias Renders
Patent Decisions Irrational, 67 OHIO ST. L.J. 1391 (2006).
 55. See MUELLER, supra note 53, at 186-92.

296 Michigan State Law Review [Vol. 2008:279

up to the sub-licensor (who is also the licensee). Different royalty rate
models also add to the diversity. Like FOSS licensing generally, sublicens-
ing envisions a chain of distribution. One difference, however, is that the
FOSS approach allows the chain to self-propagate many more links than the
typical three-level licensor-to-licensee-to-sublicense model of proprietary
software. Moreover, the distribution patterns in FOSS can morph into a
multi-dimensional web structure, although practical constraints limit this
phenomenon.56

Beyond sublicensing, licenses have provisions to handle who took
rights for modifications, and what a licensee can do with modifications to
software. These can include reciprocity provisions requiring those with
licensing interests in the code to “grant back” rights to others. For this rea-
son, such provisions are often called grant-back clauses.

However, even if all the elements/limitations recited in the claim ex-
isted in the prior art, that by itself does not prove obviousness. The artisan
in the field, patent law’s “reasonable person,” must have thought it obvious
to make the claimed combination. In litigating this issue, expert testimony
is typically offered. Courts, however, often find the expert evidence in
equipoise. For that reason and others, the obviousness inquiry also uses
“secondary considerations.”

2. Secondary Considerations: Particularly “Unexpected Results”

Some secondary considerations take into account perspectives about
the claim’s technological field before the invention, while others take into
account what occurs after the invention and its subsequent commercializa-
tion, if any. Among the secondary considerations,57 this analysis chooses to
focus on just one: unexpected results. Specifically, this analysis will focus
on the unexpected success of the licensing model, both in terms of propaga-
tion of FOSS licensing and the development of software under the model.

 56. Most FOSS project distribution patterns are not an ad hoc web because there is
semi-centralization of the code base via web repositories in association with a group of pro-
ject leaders who disproportionably influence development, due to their early history with the
project or other unique attributes. A related phenomenon is forking, where a group of pro-
grammers takes a FOSS project in a different direction, effectively creating two competing
(or complimentary) products where before there was only one. FOSS licenses allow forking,
as long as the software continues to meet the conditions of the original license regime. Fork-
ing is rare, but the possibility of forking is thought to provide an important disciplining force
on the ad hoc leadership group in charge of most open source products. McGowan, supra
note 7, at 263-64.
 57. Secondary considerations include commercial success, unexpected results, copy-
ing, long-felt but unresolved need, and the failure of others to develop the invention. Gra-
ham v. John Deere Co. of Kan. City, 383 U.S. 1, 17-18 (1966).

Spring] Claiming Copyleft in Open Source Software 297

FOSS licensing propagates in two ways. First, the GPLv2 has numer-
ous imitators. These other licenses flatter the GPLv2 model of shareable,
transparent software that must remain in that cycle. Second, an increasing
amount of code in use is under the GPLv2 or its imitators. The latter point,
however, needs greater empirical support for full potency. For example,
while more and more code is indisputably under GPLv2-style licenses, is
this increase greater than other growth measures in information technology,
such as the installed base of equipment or the total amount of all software
installed? Is it more than the increase in attribution-only FOSS code?
While important, this additional quantification is not critical. Rather, the
crucial notion is this author’s estimate that, before 1991, most software li-
censing professionals would scoff at the proposition that the GPLv2 scheme
would have more than niche success. Therefore, any non-trivial FOSS li-
censing presence is significant, and the FOSS movement is clearly more
than niche.

Related to this is the unexpected success of the software development
model enabled by FOSS licensing. It is becoming increasingly difficult to
stereotype FOSS development. However, for the most prominent projects,
there are some common elements. One oft-celebrated feature is FOSS de-
velopment’s distributed nature, engendered by source code transparency.
The programmers are scattered, possibly around the globe, and use the
Internet to coordinate activities with the shareable code base. Volunteerism,
or at least subsidization, fuels the projects. Either or both could come from
an individual or organization.

FOSS’s volunteer, distributed development model is also unique in al-
lowing programmers to self-select work within the project.58 One can earn
one’s way onto a desired part of the project by contributing superior code
for that part. The model also has software defect detection advantages.
While programming is as much art as science, good technological solutions
are recognizable. These inner workings are observable to the user commu-
nity, which can also contribute, although in different ways than can the core
programmers.

The FOSS development model has influenced the world of commer-
cial software development, lessening its traditional command and control
approach,59 and prompting companies to reevaluate internal code sharing

 58. See Benkler, supra note 7, at 414-15 (noting that an advantage of open source
software and peer production is that, compared to management hierarchies, contributors are
better able to judge where best to apply their talents within various projects).
 59. For the classic treatment of the differences in traditional proprietary software
development as compared to FOSS, see Eric S. Raymond, The Cathedral and the Bazaar
(2000), http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar (coining the
phrase “[g]iven enough eyeballs, all bugs are shallow,” a metaphor about eliminating defects
in software with massively paralleled human examination of the problem).

298 Michigan State Law Review [Vol. 2008:279

practices and collaborative structures. These effects would not be expected
by a software licensing professional examining the GPLv2 for the first time
in 1991.

This treatment of “unexpected results” as a secondary consideration
overlaps with two of the other considerations: copying of the GPLv2 licens-
ing method and the commercial success based upon it. The latter notion
takes the analysis away from the question of patent claim validity and in-
stead places the focus on the question of enforcement. The FOSS move-
ment is involved with commercial information technology interests in many
ways. Thus, even for FOSS programs whose licensing disables traditional
royalty payments, there can be, and is, commercial success.60 Commercial
success means activity in commerce and in the information technology eco-
system. For a patent with a method claim, such activity may constitute a
“use” of the method, and thereby potentially be considered an act of in-
fringement.61

III. CLAIMED COPYLEFT: ENFORCEMENT MOMENTS IN THE FOSS
MOVEMENT

Like many movements, as its success surged, the FOSS movement be-
came increasingly multi-stranded. There are many ways to taxonomize the
interests involved with FOSS, but to simplify the discussion below, the Ar-
ticle will use a two-camp approach: the free software camp and the open
source camp.62 The open source camp emphasizes the software develop-
ment advantages arising from FOSS licensing, and contains Linus Torvalds,
the leader of the Linux kernel project. The free software camp emphasizes
self-determination possibilities and social solidarity arising from FOSS li-
censing, and contains the FSF and the putative GPLv2 patent holder, Rich-
ard Stallman. The Linux kernel project is the basis for a number of operat-
ing system distributions that are popularly called “Linux,” although the FSF
argues that “Linux” is more appropriately called “GNU/Linux,” emphasiz-
ing the principles of software freedom associated with the GNU project. In
general, a GNU/Linux operating system distribution rests on the Linux ker-

 60. For example, Red Hat distributes an operating system based on the Linux kernel,
which is a GPLv2 application. See generally Red Hat, The Open Source Leader,
http://www.redhat.com/about/ (last visited May 14, 2008) (“Today Red Hat is the world’s
most trusted provider of Linux and open source technology.”).
 61. The patent owner has legal power, through an infringement lawsuit, to stop
others from making, using, selling, offering to sell, or importing whatever the patent validly
claims. 35 U.S.C. § 271(a) (2000).
 62. See Greg R. Vetter, Exit and Voice in Free and Open Source Software Licens-
ing: Moderating the Rein over Software Users, 85 OR. L. REV. 183, 205 (2006) [hereinafter
Vetter, Exit and Voice in FOSS] (noting that the line between the two camps is not a bright
line).

Spring] Claiming Copyleft in Open Source Software 299

nel, but contains critical components from the GNU project.63 The FSF’s
vocabulary control argument is but one example of the group’s explicitly
political orientation and its proclivity to evangelize the merits of free soft-
ware.64

A. The FSF and Copyright Enforcement of GPLv2

Evangelization is also in the GPLv2 license itself, both expressively
and functionally. The license’s one-page preamble is of a constitutional
character for the free software camp.65 The terms implementing its novel
software licensing approach seek to condition distribution of software in
such a way as to ensure that it remains freely reviewable and shareable
through a web of distribution and generational future development. The
conditions that prohibit privatizing the code activate based on distribution,
in the copyright sense. When such privatizing occurs, the FSF usually en-
forces the GPLv2 through conversation with the offending entity, but it has
used court action as well.66 Both enforcement modes help emphasize the

 63. The GNU/Linux operating system is sometimes referred to as Linux. An operat-
ing system, however, is not a single large software work, but is rather an aggregation of
many software components. The central component is the kernel, which is properly called
Linux. Distributions of a Linux kernel-based operating system include other critical compo-
nents. Most distributions include a set of essential software tools from the GNU project, a
separate open source software effort. Richard Stallman, The GNU Project, available at
http://www.gnu.org/gnu/thegnuproject.html (found under the heading “Linux and
GNU/Linux”). Thus, some use the name GNU/Linux for such a distribution. Id. (“We call
this system version GNU/Linux, to express its composition as a combination of the GNU
system with Linux as the kernel.”). The GNU acronym is a self-referential label meaning
“GNU’s Not UNIX,” with Unix being a predecessor computer operating system. See The
GNU Operating System, http://www.gnu.org (last visited May 14, 2008).
 64. See Richard Stallman, Why “Open Source” Misses the Point of Free Software,
http://www.gnu.org/philosophy/open-source-misses-the-point.html.
 65. Rod Dixon, Breaking into Locked Rooms to Access Computer Source Code:
Does the DMCA Violate a Constitutional Mandate When Technological Barriers of Access
are Applied to Software?, 8 VA. J.L. & TECH. 2, ¶ 106 n.257 (2003); LI-CHENG (ANDY) TAI,
THE HISTORY OF THE GPL (2001), http://www.free-soft.org/gpl_history/; Free Software
Found., GPL Version 3: Background to Adoption, June 3, 2005, http://www.fsf.org/-
news/gpl3.html.
 66. Progress Software Corp. v. MySQL AB, 195 F. Supp. 2d 328 (D. Mass. 2002);
see also Counterclaim at 5, Progress Software Corp., 195 F. Supp. 2d 328 (No. Civ. A. 01-
11031-PBS) (alleging that Progress Software, through its wholly-owned subsidiary
NuSphere, violated the GPL by “selling derivative works based on the MySQL™ Program
without making the underlying source code available”); cf. Declaration of Eben Moglen in
Support of Defendant’s Motion for a Preliminary Injunction on its Counterclaims at 11,
Progress Software Corp., 195 F. Supp. 2d 328 (No. Civ. A. 01-11031-PBS), available at
http://www.gnu.org/press/mysql-affidavit.pdf (arguing that “Progress Software Corp. lost the
right to distribute MySQL when it distributed NuSphere MySQL Advantage in a fashion that
violated GPL”). Another enforcement action was filed around the time of publication of this
Article. See Complaint at ¶ 13, Andersen v. Monsoon Multimedia, Inc., No. 1:07-CV-

300 Michigan State Law Review [Vol. 2008:279

political message of software freedom carried by the license—enforcing the
license is part of spreading the free software message.

Given the actual history of GPLv2 enforcement when the software is
distributed in contravention of the license, this may appear to signal an ori-
entation in the counterfactual to enforce the patented method embodied by
licensing software under GPLv2. This may not necessarily be true for
FOSS’s primary rivals, however, because a third party might copy the soft-
ware into a proprietary product and distribute it in violation of the copy-
right-based conditions of the GPLv2, yet not infringe the GPLv2 licensing
method patent. The third party is not practicing the claimed method be-
cause the distribution is proprietary, i.e., it does not contain source code
and/or require royalty payment(s). At its most potent, the patent will only
confer potential control over licensing practices that are substantially similar
to the claimed GPLv2 method.67 Thus, the patent may be more useful
against other strands within the FOSS movement than against pure proprie-
tary software interests.

Fueled by its political cause, the world of information technology
would not be surprised if the FSF enforced the GPLv2 patent, at least some
of the time, and at least at the conversational level. It would do so to ad-
vance the agenda of free software. The FSF’s conversational approach to
GPLv2 license enforcement emphasizes correcting the offending software.
Thus, a satisfactory remedy for the FSF has often been to discuss the prob-
lem with the entity that has incorporated GPLv2 licensed code into a propri-
ety product. This discussion aims to bring the code back into the open,
making its source available and ensuring that it is not subject to proprietary
software royalties.68

Thus, asymmetries between the GPLv2 patent and copyleft limit FSF
enforcement of the GPLv2 patent even if its actual copyleft enforcement
suggests such enforcement. In copyright-based enforcement of GPLv2, a
violation will often completely counter free software goals. In patent en-
forcement, the more the violator moves away from a GPLv2 licensing ap-
proach, the less likely patent infringement will be. It would go too far to
say that GPLv2 provides enforcement power only over strands within the

08205-JES (S.D.N.Y. Sept. 19, 2007), available at http://www.softwarefreedom.org/-
news/2007/sep/20/busybox/complaint.pdf (“Defendant offers copies of the Firmware on its
website, but does not offer any source code corresponding to the Firmware.”).
 67. Warner-Jenkinson Co. v. Hilton Davis Chem. Co., 520 U.S. 17, 39-40 (1997)
(reciting the tripartite (triple-identity) test of finding equivalence under the doctrine of
equivalents, where the accused infringing device has structure that meets a claim ele-
ment/limitation non-literally by performing a substantially similar function in a substantially
similar way with a substantially similar result); see also Festo Corp. v. Shoketsu Kinzoku
Kogyo Kabushiki Co., 535 U.S. 722, 732-33 (2002) (reaffirming the doctrine of equivalents
as an alternative mode of asserting that a claim element is met for infringement purposes).
 68. Vetter, Exit and Voice in FOSS, supra note 62, at 243-48.

Spring] Claiming Copyleft in Open Source Software 301

FOSS movement, but the patent’s potency is greater if it is closer to home.
This is an important consideration informing much of the analysis below.

B. Abhorrence of Patents for Software versus Abhorrence of Patents for
Licensing Methods

In evangelizing free software, the FSF advocates against patent protec-
tion for software.69 Its advocacy is vocal and influential. The FOSS move-
ment was an important factor in the European Union declining to pass a
directive to clarify the scope of computer-implemented inventions. The
worry was that the directive contained a Trojan horse—that by “clarifying”
the law, the directive would have certified such patents as well as hastening
their increase because the directive’s language was too pliable.70 The politi-
cal economy of the entire affair is important and historical, but it is used
here as an example to show the FSF’s abhorrence of patent protection for
software.71

This raises the question of whether this abhorrence transmutes into
abhorrence for the somewhat different subject matter of a patent on a licens-
ing method. If methods to achieve legal ends are patentable statutory sub-
ject matter, one can imagine injustices paralleling those the FSF sees from
patenting software.

One way to test this reasoning is to reference an issue simmering at
the time of this Article’s publication: patent protection for tax planning
methods.72 A primary philosophical argument against counting these as
statutory subject matter is that citizens should not be forced to choose be-
tween infringing a patent and violating tax law (although it seems unlikely
that all patent protection for tax planning methods would produce this re-
sult). The social injustice of this resonates with Richard Stallman’s argu-
ment that a person needs control over her computer to live freely, and that

 69. Free Software Found., Year End Appeal, http://www.fsf.org/index_appeal (last
visited May 14, 2008) (noting that membership drive is to further various FSF causes, includ-
ing its “defense against software patents”).
 70. Nikki Tait, European Position Is Left Patently Unclear, FIN. TIMES, Sept. 21,
2005, at 11. The FOSS community was vocal and active in the European Union legislative
process, including showing support for proposed amendments to favor FOSS licensing. Id.
at 4; Committee on Legal Affairs and the Internal Market, Report on the Proposal for a
Directive of the European Parliament and of the Council on the Patentability of Computer-
Implemented Inventions, at 20, COM(2002) 92 final (June 18, 2003), available at
http://www2.europarl.eu.int/omk/sipade2?PUBREF=-//EP//NONSGML+REPORT+A52003-
0238+0+DOC+PDF+V0//EN&L=EN&LEVEL=2&NAV=S&LSTDOC=Y (“The rapporteur
has also carefully weighed the arguments put forward by industry and the open source com-
munity”).
 71. Vetter, Exit and Voice in FOSS, supra note 62, at 248-55.
 72. See generally Dan L. Burk & Brett H. McDonnell, Patents, Tax Shelters, and the
Firm, 26 VA. TAX REV. 981 (2007).

302 Michigan State Law Review [Vol. 2008:279

the only true avenue to that control is through free software.73 Whether
Stallman’s causal predicates are fully valid is not the critical point; rather,
the fact that patent protection might give some individuals control over oth-
ers’ ability to do something as fundamental as obey tax laws might be con-
sidered an equivalent moral wrong.

The public/private distinction in law, however, takes the analysis in
the opposite direction. It suggests that such philosophically based software
patent abhorrence would not transmute against licensing methods. The li-
censes are private instruments among private parties, even though FOSS
licenses are put forth in a generally applicable way. As such, patent protec-
tion in a FOSS licensing method, such as copyleft, is not likely to disable a
citizen of her freedom to obey public law. This is not to say that the FSF
would advocate such patent protection, but only to say that if it were avail-
able and common at the time of GPLv2’s origination, its use would be con-
sistent with the license’s use of copyright. Perhaps at the time of GPLv2’s
origination Richard Stallman would have preferred to abolish all intellectual
property protection in software. Since that alternative was not in his power,
his second best solution, using copyright against its lineage, has registered
impressive effectiveness.

The FOSS movement used a tool within its grasp, copyright protection
in software, against another form of intellectual property, trade secret law,
and to counter copyright itself.74 If the tool of patent protection were also
available, why not use it too, so long as it is not counterproductive to the
values promoted by GPLv2? Perhaps the GPLv2 patent would not be re-
pugnant to such values because the patent itself would be for the method
embodied by practicing the license. As a right to exclude held by the FSF,
it would be complementary to the copyleft conditions in GPLv2.

Changing the holder of the GPLv2 patent right, however, flips the ar-
gument. While it is likely benign to FOSS if held by the FSF, a GPLv2
patent held by Microsoft likely threatens the entire FOSS movement. This
would be a reason for abhorrence of patents on licensing methods.

As is typical with counterfactual analysis, the question is more impor-
tant than the answer. On the one hand, GPLv2 patent protection might be a

 73. See Richard M. Stallman, Why Software Should Not Have Owners, in FREE
SOFTWARE, FREE SOCIETY: SELECTED ESSAYS OF RICHARD M. STALLMAN 47, 47-51 (Joshua
Gay ed., 2002), available at http://www.gnu.org/philosophy/fsfs/rms-essays.pdf [hereinafter
FREE SOFTWARE, FREE SOCIETY].
 74. GPLv2 sought to eliminate secret source code during an era in the software
industry when the dominant software revenue model was to keep source code secret, distrib-
ute object code, and often obtain contractual assent by the recipient to observe the secrecy.
This, along with the baseline copyright protection that might attach to the software, founded
the necessary exclusionary rights of “intellectual property” to charge royalties or license fees
of some sort. GPLv2 needed to counter both secrecy and ongoing use royalties to frame a
system where FOSS could be freely shared, changed, and shared again.

Spring] Claiming Copyleft in Open Source Software 303

useful tool to further free software goals. That is the subject of the next
Section. On the other hand, the exogenous nature of patent law’s in rem
right to exclude makes it a different creature from copyright. The patent
right excludes anyone, even the independent developer, whereas copyright
traces the lineage of copying from the right holder. If abhorrence of patents
for software derives from institutional considerations that patent protection
is a bad fit for software technology, a greater potential willingness to use
patent protection for licensing methods would be the result, assuming such
protection were available. However, if abhorrence of patents derives from
concerns that its in rem system is too potent, this could underpin a philoso-
phical rejection of the tool.75

To conclude this Section, there is one additional technical point to
make about the GPLv2 patent. Best practices would suggest that the GPLv2
license text be modified in light of the GPLv2 patent, granting permission to
practice what the patent claims. Otherwise, the licensing method patent
would be on a similar footing as software patents when distributors of
GPLv2 licensed software hold patents covering the software. That footing
is the unsettled law of implied license,76 the details of which are put aside
for this analysis. Revisions to the GPL in a later version eventually made
the software patent license explicit.77 In the counterfactual, however, the
license text should grant permission to practice the GPLv2 patent. This
concept will anchor the discussion of the first enforcement moment in Sub-
section III.D.1 below. That permission will state that a prima facie asser-
tion of non-infringement of the GPLv2 patent arises when the unmodified
GPLv2 license document is reapplied. In other words (using the words of
patent law), licensing software using GPLv2 is a permitted embodiment of
the process claimed by the GPLv2 patent.

Before visiting the enforcement moments in Section III.D, the next
Section pauses to consider the other dominant license model within the
FOSS movement: attribution-only licensing. This model deserves special
treatment due to its prominence—it is non-infringing, but it does not
threaten the validity of the GPLv2 patent. Moreover, its prominence con-
strains the enforcement power of the GPLv2 patent.

 75. See Richard M. Stallman, The Danger of Software Patents, in FREE SOFTWARE,
FREE SOCIETY, supra note 73, at 97, 97-98, 105 (describing the patent system disfavorably
with an emphasis on its social costs).
 76. See RAYMOND T. NIMMER, LICENSING OF INTELLECTUAL PROPERTY AND OTHER
INFORMATION ASSETS 315 (2004) (“While courts often refer to the idea of an ‘implied li-
cense’ in litigation dealing with intellectual property claims, the content of the doctrine and
its scope of application is far from settled and, often, seems far from coherent.”).
 77. See GPLv3, supra note 10, § 11.

304 Michigan State Law Review [Vol. 2008:279

C. Non-Infringing Attribution-Only FOSS Licensing

The attribution-only license approach pre-dates GPLv2. Although
many important FOSS projects operate under attribution-only licenses, these
licenses merely claim copyright and then require that an attribution state-
ment appear with the code. The attribution-only license does not have the
features to ensure that the software remains transparent and shareable, al-
though it often does so under institutional and practical influences. These
licenses allow others to do practically anything with the software, including
incorporating it into proprietary software, as long as there is notice that the
software originated from the original project. These licenses do not even
require that the source code be available, a key norm of the FOSS move-
ment. Thus, attribution-only licenses are the least restrictive type of license
used for FOSS projects.78

The minimal licensing structure of an attribution-only license means
that it does not fit within the claims of the GPLv2 patent. A rubric in patent
law is that something that literally infringes if it comes later in time antici-
pates (and thus invalidates) a patent claim if it comes earlier in time. This
demonstrates apropos that attribution-only licenses will not threaten the
validity of the GPLv2 patent even though they are prior to it. The corre-
sponding lack of GPLv2 patent enforcement power over attribution-only
licensed software, however, is also of great consequence—it significantly
limits the patent’s influence over much of the open source camp within the
FOSS movement.

The next Section posits that the FSF has incorporated the tool of pat-
ent protection into its GPLv2 implementation and practices in the industry
for most of the last two decades. Many of the items discussed below are
particularly well known situations or events in the history of FOSS. Thus,
they comprise a set of test cases to evaluate the effect of a FSF-owned
GPLv2 patent. The treatment of each is not exhaustive: the goal is more to
show the possible effects from enforcement than to answer the question of
what happens in each hypothetical case.

D. Some Potential Enforcement Moments for the GPLv2 Patent

Enforcing an intellectual property right means considering the avail-
able remedies, which in United States patent and copyright law include

 78. Given that attribution-only licenses do not require that the software be free of
royalties, or that source code be available, there is some question as to whether attribution-
only licenses are properly called FOSS. They are often categorized this way, however, be-
cause the programmers manage these projects using freely available source code and inter-
net-based collaborative development.

Spring] Claiming Copyleft in Open Source Software 305

damages and injunctive relief.79 Patent law lacks statutory damages and
thus has a different structure than copyright damages.80 This difference
could have great effect where the enforcer seeks damages, since actual
damages or lost profits in a FOSS setting will raise interesting questions for
software developed and shared freely.81 Certainly, some situations implicate
actual damages, but others may have only a tenuous chance for this type of
remedy. Thus, as between copyright and patent protection for the FOSS
program (putting aside the counterfactual for the moment), copyright dam-
ages may provide greater leverage and threat value. The injunction question
raises the need for a similar comparative inquiry, both for preliminary and
permanent injunctions.82

Given the potential modes of enforcement, the key consideration be-
low is, under threat of or actual enforcement of the GPLv2 patent, whether
the enforcement target diminished, altered, or ceased her activity. The
analysis will not attempt to estimate how such diminution is derived from
each component of some hypothetical remedial mix. This would be artifi-
cially over-precise, and is not essential to an analysis of the potential effects
of the GPLv2 patent on FOSS’s trajectory in the information technology
ecosystem.

Finally, the enforcement discussion below generalizes infringement
under U.S. patent law along a continuum, with literal infringement at one
end and infringement under the Doctrine of Equivalents (DOE) at the
other.83 Though the situations and events described below are concrete and
specific, differentiating between patent law’s dual modes of infringement
does not seem productive for every case. The primary point is that the DOE
allows discussion of at least the potential for enforcement of the GPLv2

 79. ROGER D. BLAIR & THOMAS F. COTTER, INTELLECTUAL PROPERTY: ECONOMIC
AND LEGAL DIMENSIONS OF RIGHTS AND REMEDIES 12-13, 29-30, 69 (2005).
 80. Id.
 81. A complaint in a FOSS licensing enforcement action around the time of this
Article requests damages, focusing on the interesting question of how to calculate them. See
Complaint at ¶ 20, Andersen v. Monsoon Multimedia, Inc., No. 1:07-CV-08205-JES
(S.D.N.Y. Sept. 19, 2007), available at http://www.softwarefreedom.org/news/2007/sep/-
20/busybox/complaint.pdf.
 82. Beyond noting that the enforcement power of a patent or a copyright includes
injunctive relief, the analysis will not attempt to further assess the comparative strength of
either in a qualitative or quantitative way in the FOSS setting. See eBay Inc. v. MercEx-
change, L.L.C., 547 U.S. 388, 390, 392, 393-94 (2006) (reaffirming that “the four-factor test
historically employed by courts of equity” applies to issuance of a permanent injunction for
patent infringement, overturning the action by the Court of Appeals for the Federal Circuit,
which “articulated a ‘general rule,’ unique to patent disputes, ‘that a permanent injunction
will issue once infringement and validity have been adjudged,’” and noting that “[t]his ap-
proach is consistent with our treatment of injunctions under the Copyright Act”).
 83. Warner-Jenkinson Co. v. Hilton Davis Chem. Co., 520 U.S. 17, 39-40 (1997);
see, e.g., Joshua D. Sarnoff, Abolishing the Doctrine of Equivalents and Claiming the Future
After Festo, 19 BERKELEY TECH. L.J. 1157 (2004).

306 Michigan State Law Review [Vol. 2008:279

patent’s claims across a greater range of licensing method variation by third
parties than if literal infringement were considered exclusively.84

1. “Don’t Change This License!” (it is copyrighted)

Most FOSS licenses say that third-party developers can apply the li-
cense to other software, but that the license may not be changed. Putting
aside interactions with trademark law,85 contract-based enforcement of the
terms of the license, and any tort-based rights, these statements rely on
copyright protection as it might attach to the license text as a literary work.
For example, consider this quote from the Eclipse Public License:

Everyone is permitted to copy and distribute copies of this Agreement, but in order
to avoid inconsistency the Agreement is copyrighted and may only be modified in
the following manner. The Agreement Steward reserves the right to publish new
versions (including revisions) of this Agreement from time to time. No one other
than the Agreement Steward has the right to modify this Agreement.86

The particular FOSS program referenced by this license, Eclipse, is man-
aged by a foundation that also serves as the “Agreement Steward.” IBM
established this foundation as it moved into a supporting position for open
source software.87

The quoted language asserts that changing the license would be a
copyright violation. However, the copyright protection in the Eclipse Pub-
lic License may not be very potent due to a number of factors. Contract
language has a functional character and thus often carries a minimal degree
of expressiveness, as opposed to ideas—there is a need to use preexisting,
standardized legal terms and phrases that constrain the alternatives in recit-
ing the license rights.88 Moreover, fair use is available under U.S. copyright

 84. To speak of the DOE invites mention of the limitations on asserting that doc-
trine. These limitations must be ignored, however, because most of them require either a
detailed understanding of the prior art, or the prosecution history, or both. The Article does
not evaluate the former in a detailed way, and the latter cannot be generated in the abstract; it
takes real patent prosecution to generate sufficiently detailed prosecution history.
 85. The trademark issue is illustrated most explicitly by a FOSS license that is tied
by name to a specific FOSS program or company. See, e.g., Apple Computer, Inc., Apple
Public Source License Version 2.0, ¶ 10 (2003), http://www.opensource.apple.com/apsl
(discussing conditions for use of Apple’s marks in association with the software). A devel-
oper revising the program and distributing something that is essentially no longer the original
may create confusion among users of the technology if she associates her new software with
any trademarks embedded in the license.
 86. See Eclipse Public License—v 1.0, § 7, ¶ 4 http://www.eclipse.org/org/docu-
ments/epl-v10.php (last visited May 14, 2008).
 87. Eclipse, About the Eclipse Foundation, http://www.eclipse.org/org (last visited
May 14, 2008).
 88. J.H. Reichman, Charting the Collapse of the Patent-Copyright Dichotomy:
Premises for a Restructured International Intellectual Property System, 13 CARDOZO ARTS &

Spring] Claiming Copyleft in Open Source Software 307

law, further limiting the control the license author may have over subse-
quent use of the license language.89 For these reasons, there is reason to
doubt the potency of copyright control over reuse of the license text.

The GPLv2 patent, however, would add another enforcement tool. In
Section III.B above, it was noted that permission to practice the GPLv2
patent would use a prima facie approach—reapplying the unmodified
GPLv2 license to software is non-infringement of the GPLv2 patent. Thus,
the license text modifications that may not concern the modifier under copy-
right enforcement may require more heed due to the GPLv2 patent. This is
because the patent’s claim(s) will likely cover a wide range of revision to
the license language as long as the license still implements the key tech-
niques of GPLv2, such as source code availability, no royalties, and
copyleft.

The more the revised license language deviates from the original, the
more it may only “copy” ideas under copyright protection, and the greater
the possibility it will not infringe the GPLv2 patent if the textual changes
also represent a different mode of licensing. In this sense, the likelihood of
both patent and copyright infringement decreases as the license reviser
changes the text. For GPLv2, as compared to the Eclipse Public License,
the analysis should treat the license preamble differently. The GPLv2 pre-
amble is a core literary work under copyright. It is unique among FOSS
license preambles, and is literary in a way few software licenses have ever
been. Its copyright enforcement would be inherently more potent, and it
would not implicate the GPLv2 patent because it does not embody the
claim(s). The non-preamble sections of GPLv2 contain the provisions that
embody the hypothetical claim.

The GPLv2 patent, then, would put teeth into the license’s “don’t
change me!” provision.90 The FSF would be able to more closely govern
any close copies or minor changes to GPLv2. It would also be able to ex-
tend the prima facie approach to other FOSS licenses. This might enable
the FSF to exert greater influence over a phenomenon often discussed as a
problem in the FOSS movement—license proliferation.

ENT. L.J. 475, 495-96 (1995) (noting that courts provide thin protection for factual and func-
tional works). But see 1-2 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT
§ 2.18[E] (2007) (arguing that there is no basis for certain types of legal texts to not receive
copyright protection and declining to mention that such protection would be characterized as
“thin”).
 89. 17 U.S.C. § 107 (2002).
 90. GPLv2, supra note 2 (“Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not allowed.”).

308 Michigan State Law Review [Vol. 2008:279

2. License Proliferation

The license proliferation problem posits that too many FOSS licenses
have been authored and made available. Disadvantages resulting from this
situation would include difficulty for programmers in selecting from the
increasing number of licenses, redundant licenses, “vanity” licenses,91 and
dilution of the energy of a group associated with the open source camp that
operates a certification mark for FOSS licenses.92 On the other hand, this
congestion would provide an advantage to well-known licenses such as the
GPLv2—programmers would rather choose it than search through a
crowded field.93

The FSF has extensive commentary and analysis of various FOSS li-
censes posted on its web site.94 In its commentary, the FSF might favor
some licenses over others because their provisions implement free software
principles more pleasing to the FSF. This favoritism, assuming these are
GPLv2-style95 licenses, might specify that reapplying the favored licenses
verbatim creates a prima facie non-infringement permission for the GPLv2
patent. Thus, the FSF’s program of license commentary could be buttressed
by better legal status for some licenses.

The FSF license commentary undoubtedly influences some strands of
the FOSS movement to prefer certain licenses. This is a first step against
license proliferation; a published but unpopular license is less of a prolifera-
tion problem than one with a following. With the GPLv2 patent, the FSF
might go further, and assert that its disfavored GPLv2-style licenses lack
permission to practice the GPLv2 patent. Patent law allows the right-holder
to exercise this discretion generally without constraint.96 Thus, the FSF

 91. OPEN SOURCE INITIATIVE, REPORT OF LICENSE PROLIFERATION COMMITTEE AND
DRAFT FAQ (2006), http://opensource.org/proliferation-report (In the OSI’s efforts to reduce
the number of FOSS licenses in circulation, its license proliferation committee characterized
some licenses as “. . . specific to their authors and cannot be reused by others. Many, but not
all, of these licenses fall into the category of vanity licenses.”).
 92. Open Source Initiative, http://www.opensource.org/index.php (last visited May
14, 2008) (“Open source is a development method for software that harnesses the power of
distributed peer review and transparency of process. The promise of open source is better
quality, higher reliability, more flexibility, lower cost, and an end to predatory vendor lock-
in.”).
 93. Programmers also express their values by choosing the GPLv2 because it is the
license most overtly associated with the FSF and its software freedom principles. See Vetter,
Exit and Voice in FOSS, supra note 62, at 202-04, 221-24.
 94. Free Software Found., Licenses, http://www.fsf.org/licensing/licenses (last vis-
ited May 14, 2008).
 95. A GPLv2-style license is one that imitates the GPLv2 in its key characteristics
of source code availability, no royalties, and copyleft.
 96. Most of the law potentially constraining a patent holder’s right to wield the
instrument, such as antitrust, is inapplicable to the counterfactual or does not add to the
analysis, nor do more mundane matters such as whether particular acts of infringement fall

Spring] Claiming Copyleft in Open Source Software 309

could limit its approval to licenses that are worthy of the principles of free
software.

This might create interesting interactions with the Open Source Initia-
tive (OSI), the group responsible for operating the certification mark re-
ferred to above, called the Open Source Definition (OSD). The OSD de-
fines criteria against which the OSI evaluates and certifies licenses.97 The
OSD license criteria share many similarities with GPLv2. The OSI catego-
rizes GPLv2 as an “open source” license. One difference, however, is that
unlike GPLv2, the OSD does not require that a license demand that modifi-
cations be distributed under the same terms. The OSD merely says that a
license must allow such a condition, but that a license need not have it.98
The OSD itself is not a FOSS license, but only a measuring device used to
classify FOSS licenses.

Thus, the OSD criteria would certify many licenses that are too differ-
ent from the GPLv2 patent to fear infringement, particularly many licenses
that take an attribution-only approach. A FOSS license that does not require
copyleft or reapplication of the same terms, or even reapplication of the
critical FOSS-preserving terms, would not literally infringe the GPLv2 pat-
ent. It also likely would not infringe under the DOE, since the licensing
function and the licensing result are likely not substantially similar, or, in
the other DOE formulation, insubstantially different.99 Thus, the GPLv2
enforcement power would not reach many OSD certified licenses.

Assume, however, that the OSI wanted to certify and list a license that
embodied the GPLv2 patent claim(s), but also embraced Digital Rights
Management (DRM) to enforce the FOSS license. Given the FSF’s stance
against DRM as expressed in version three of the GPL,100 it is conceivable
that the FSF would withhold permission for the DRM-embracing license to
practice the GPLv2 patent. Perhaps as a result, the OSI would choose not to
list the license, though this is unlikely since a certification mark system un-

within patent law’s statute of limitations for bringing an infringement action. 35 U.S.C. §
286 (2000).
 97. Open Source Initiative, http://www.opensource.org (last visited May 14, 2008)
(“The Open Source Initiative (OSI) is a non-profit corporation formed to educate about and
advocate for the benefits of open source and to build bridges among different constituencies
in the open-source community.”).
 98. Open Source Initiative, The Open Source Definition § 3,
http://www.opensource.org/docs/osd (last visited May 14, 2008).
 99. Warner-Jenkinson Co. v. Hilton Davis Chem. Co., 520 U.S. 17, 38-41 (1997)
(noting that two linguistic versions of the test for the doctrine of equivalents are in use and
declining to elevate either over the other, where one uses the construct of insubstantial dif-
ferences, while the other, the triple-identity test, uses the construct of substantial similarity
for function, way, and result).
 100. GPLV3, supra note 10, § 3.

310 Michigan State Law Review [Vol. 2008:279

der trademark law obligates nondiscriminatory treatment.101 Thus, prolifera-
tion is diminished but not eliminated. The DRM-embracing license may be
listed, but the FSF is likely to let the world know that no one has permission
to practice it.

In sum, the GPLv2 patent would likely be a minor influence on license
proliferation because it would only cover GPLv2-style FOSS licenses. This
influence would tend to reduce the number of FOSS licenses. In addition,
any GPLv2-style licenses would likely pay greater heed to the free software
agenda. Even if these influences are slight, they could have impacts in the
ongoing strategic game occurring both within the FOSS movement and ex-
ternal to it in information technology.102

The next two enforcement moments look at slight variations of the
GPLv2 that will be assumed to fall within the patent’s claims either literally
or as an equivalent, thus establishing the FSF’s patent enforcement power.

3. GPLv2 as Applied to the Linux Kernel

The Linux kernel is central to the GNU/Linux operating system distri-
butions. Each distribution is not a single program, but an inter-functioning
collection of many components from multiple sources, with different FOSS
licenses. Thus, virtually every component will interact with the kernel.
Moreover, a user might install a GNU/Linux distribution and run proprie-
tary software on the operating system. Such proprietary software also inter-
acts with the Linux kernel. This raises an issue: if the kernel is licensed
under GPLv2, do such interactions mean that GPLv2 must apply to the pro-
prietary software?

This issue arises because the GPLv2 has some provisions that are
commonly called the license’s “viral” or “infectious” characteristics. What
is at stake is whether the GPLv2 terms must be extended to other software
when one couples or intermixes that other software with the GPLv2-
licensed software and distributes the resulting “whole.” The word “whole”

 101. 15 U.S.C. § 1064(5) (2000) (Lanham Act § 14(5), providing that a certification
mark is at risk of cancellation if the markholder “discriminately refuses to certify or to con-
tinue to certify the goods or services of any person who maintains the standards or conditions
which such mark certifies”); see also 3 J. THOMAS MCCARTHY, MCCARTHY ON TRADEMARKS
AND UNFAIR COMPETITION § 19:90 (4th ed. 2008). The OSI could change its standards to
only list licenses not under infringement risk from the GPLv2 patent, but this would directly
cede control over a portion of the certification process to the FSF. Framing the addition to
the certification standard in this way places full discretion with the FSF. It can use its own
criteria to determine whether to pre-commit to permit a particular license to practice the
patent. Finally, listing licenses with GPLv2 patent infringement risk raises in some remote
way the worry about indirect patent infringement liability for the OSI. In United States
patent law, there are two types of indirect liability: inducement and contributory liability. 35
U.S.C. § 271(b)-(c). Noting this, however, is as far as the analysis will go on the point.
 102. See WEBER, supra note 7, at 134-49.

Spring] Claiming Copyleft in Open Source Software 311

is emphasized because it is one of the operative words in GPLv2.103 It is
ambiguous under GPLv2 whether the reach of this characteristic ends with
what copyright law considers a derivative work, or extends further, although
in that case, contract enforcement might be necessary. Other articles have
treated these issues,104 so the minimal treatment here will simply explain
why proprietary software vendors might worry about running on
GNU/Linux. Proprietary software vendors control their source code and
usually keep it secret, so they might have to revise their software in order
for it to run on GNU/Linux. After doing so, however, they would not want
a free software advocate claiming that they must now release their proprie-
tary software as FOSS under GPLv2.

There are a variety of technical and copyright-related reasons why
such a claim would be tenuous. Nevertheless, the claim would be compli-
cated by the availability of the source code for the Linux kernel. Operating
system kernels, including Linux, provide an interface, often called the sys-
tem calls, which the other programs running on the operating system use to
interact with the kernel.105 Linux kernel source code availability allows a
proprietary software vendor to go below the system call interface and use its
lower-level constructs directly. In a proprietary operating system such as
Microsoft’s Windows, on the other hand, similar constructs exist within its
kernel, but are hidden and thus effectively unusable. Using such constructs
in Linux is a more intimate degree of intermixing, and heightens the risk
that the GPLv2’s infectious provisions reach the “whole.”

GNU/Linux has been tremendously successful in the server computing
market, where much of the important non-Microsoft proprietary software is
available for it. The success of any operating system is dependent in part on
the number of applications available for it, so anything that diminishes the
universe of available applications inhibits growth.

Even though the “infectious” claim is tenuous as between the kernel
and the proprietary application, a slight modification to the GPLv2 as ap-
plied to the Linux kernel helps to ease the worry. Upon adopting GPLv2 for
the Linux kernel, Linus Torvalds modified the license’s permission set with
a clarifying statement carried by a file in the software.106 The statement says

 103. See GPLV2, supra note 2, § 2.
 104. See generally McGowan, supra note 7, at 289-302 (examining the FOSS ap-
proach and contract law implications); Vetter, Infectious OSS, supra note 8, at 129-30 (dis-
cussing the feature of the GPL oftentimes referred to as its “viral” characteristic).
 105. Some readers will be familiar with the term application programming interface
(API), which is a collection of functions or procedures that one process (a program in execu-
tion on an operating system) can use to ask another process to do some computing task for
the requestor. The term is associated with older software technology for program to program
interaction, but one can think of the kernel system calls as an API for the kernel.
 106. Linus Torvalds, The Linux Edge, in OPEN SOURCES: VOICES FROM THE OPEN
SOURCE REVOLUTION, supra note 7, at 101, 109.

312 Michigan State Law Review [Vol. 2008:279

that any program that uses the kernel through its “normal system calls” is, in
effect, deemed not to be part of the “whole,” even if copyright’s derivative
work right would reach that far. This pragmatic action is characteristic of
Linus Torvalds, and pragmatism undertones the approach of the open source
camp. While it is impossible to empirically evaluate the importance of this,
the “normal system calls” proviso almost certainly helped the adoption of
GNU/Linux in the marketplace. The proviso gave proprietary software
vendors greater confidence in porting their software to GNU/Linux.

In the counterfactual, however, Torvalds’s revisions would have in-
fringed the GPLv2 patent. The license variation is small, so licensing the
kernel under the GPLv2 with the “normal system calls” proviso would
likely constitute an infringing embodiment of the patent claim(s). The mar-
ket success of the Linux kernel was unanticipated, so by the time it caught
the attention of the FOSS movement, that very success was Linus Tor-
valds’s best defense. Any successful FOSS application would help the
movement. Using the GPLv2 patent to force Torvalds to remove the “nor-
mal system call” proviso would only interject a worry that might slow the
Linux kernel’s growth at a time when it was clearly becoming the center of
the most widespread FOSS success.107 This strategic reality would likely
dominate any FSF desire to purify GPLv2 as applied to the Linux kernel.

On the other hand, besides the differing philosophical approaches to
FOSS between the two camps, for a time there was an effort within the FSF
to create its own operating system kernel.108 The success of Linux effec-
tively eliminated this need over time. Would this kernel development com-
petition have raised the possibility of enforcement? The question is inesti-
mable, but it is one example of other strategic forces that might have influ-
enced the FSF’s enforcement preference.

4. “File-Level” Weak Copyleft

Like the Linux kernel, the next enforcement moment involves a fa-
mous situation within the FOSS movement, this time regarding the devel-
opment of web browsing technology for the Internet. In the 1990s, a com-
pany called Netscape was the market leader in web browsers, but saw its

 107. A common approach in the information technology industry is for competitors to
quietly promote “Fear, Uncertainty, and Doubt,” or “FUD” among the customer base. The
FUD is typically designed to disadvantage customer perceptions of the competitors of the
FUD-spreader. In the context of GNU/Linux, the general FUD phenomenon has manifested
itself with proprietary software vendors sometimes pointing to the strong copyleft feature of
GPLv2 as a reason for worry. One example of such hypothetical worry is that porting a
proprietary application to GNU/Linux puts it at risk for “infection” by the GPLv2 terms
because it is now running on a kernel covered by that license, or interoperating with other
components of GNU/Linux covered by that license.
 108. See MOODY, supra note 3, at 26.

Spring] Claiming Copyleft in Open Source Software 313

position under attack when Microsoft incorporated a web browser into its
operating system. One of Netscape’s eventual strategic responses was to
convert its web browser into a FOSS project, originally named Mozilla, and
later stewarded by a foundation with that same name.109 The conversion
was both a programming and a legal affair.110 The project engendered new
FOSS licenses, and many imitations followed.

One such license, the Mozilla Public License (MPL),111 implements
what is sometimes called “weak” copyleft as compared to GPLv2 because
MPL uses a technical bright line to express when intermixed software must
be distributed under MPL’s terms. The scope of GPLv2’s reach is at least
as far as copyright’s derivative work right, but MPL stops short of that.
MPL states that if a file is modified, then the new code put into that file
must be under MPL.112 However, if the new code is partitioned into a sepa-
rate file, it need not be licensed under MPL.113

Whether the GPLv2 patent would provide enforcement power against
MPL is an interesting question that contrasts literal infringement with in-
fringement under the DOE. The MPL technical bright line to cabin the
scope of copyleft is a notable difference and might not be an infringing
equivalent. Under the DOE’s tripartite test, the MPL copyleft boundary
may not be substantially similar. GPLv2 uses copyright’s derivative work
right to draw a fuzzy boundary, while MPL uses a technical concept to draw
a bright line. This suggests that patent law’s DOE analysis would consider
them not to be substantially similar functions, implemented in a substan-
tially similar way with substantially similar results. Intermixing new code
with MPL-licensed code while avoiding MPL coverage on the new code is
much more plausible with MPL than with GPLv2.

Accepting this logic, the GPLv2 patent would minimally impact the
Mozilla project. The project itself was not a great success in resurrecting
Netscape’s commercial prospects, but the foundation became an important
fixture in the FOSS movement. It was central to the highly successful Fire-

 109. See Mozilla, About Mozilla, http://www.mozilla.org/about (last visited May 14,
2008); Jim Hamerly & Tom Paquin, Freeing the Source: The Story of Mozilla, in OPEN
SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION, supra note 7, at 197, 203-06 (de-
scribing the events leading up to Netscape’s decision to release the source code for its web
browser, Mozilla).
 110. Bruce Perens, The Open Source Definition, in OPEN SOURCES: VOICES FROM THE
OPEN SOURCE REVOLUTION, supra note 7, at 171, 184 (describing Netscape’s release of
source code for its Web browser and the legal analysis of the source code necessary for re-
lease).
 111. Mozilla Public License Version 1.1, http://www.mozilla.org/MPL/MPL-1.1.html
(last visited May 14, 2008).
 112. Id. § 1.9.
 113. Id.

314 Michigan State Law Review [Vol. 2008:279

fox open source browser.114 Later in the movement, during the 2000s, a new
approach, the dual license, gained prominence for commercial deployment
of FOSS programs.

5. Dual Licensing and Patent Law’s “Extra Element” Infringement
Rule

A dual license seeks to establish two paths for a program, a FOSS path
and a commercial path. Each program path can cross-fertilize the other with
code, and the commercial path commits to certain benefits for the FOSS
path. Companies typically support a dual license, seeking to foster a com-
munity of developers, to contribute to that community, and to harvest from
the community some benefit to deploy in the program’s commercial path.
This structure means a meta-license surrounds the FOSS license. When
successful, the result is that a for-profit company becomes a nexus for a
community of developers, many of whom are not otherwise affiliated with
the company, but who trust the company to further FOSS movement goals,
along with commercial objectives.

If the FOSS license path of the dual license were considered a GPLv2-
style license embodying the GPLv2 patent claim(s), this would raise the
question of infringement using what is sometimes called the “extra element”
rule in patent law for infringing articles or processes.115 For a product claim,
an article infringes if it has the cooperative combination the claim recites. It
typically does not matter if the article has an extra component, since that
“extra element” does not remove the fact that the article has what the claim
recites.116 Similarly, for a process claim, an extra step typically will not
ward off infringement if the other allegedly infringing steps embody the
claimed process.

If the meta-license that puts in place a parallel commercial path for the
FOSS software is considered an extra step or element, then the GPLv2 pat-
ent enforcement power might be able to control or prohibit any dual licens-
ing using a GPLv2-style FOSS path. This analysis would be sensitive to
both the claim language of the GPLv2 patent and the license text of the dual
license. Thus, some situations might not produce infringement. However,
there is significant risk that many dual licenses will infringe.

Most companies developing FOSS around a dual license approach
would fall into the open source camp, even if using GPLv2 for the FOSS

 114. Mozilla, Firefox 2, http://www.mozilla.com/en-US/firefox (last visited May 14,
2008).
 115. See MUELLER, supra note 53, at 64-65.
 116. The “extra element” rule applies for infringement when the claim is open-ended,
meaning that its transition word is “comprising” or is one of the standard synonyms used to
signal such a claim. See id. at 64-65.

Spring] Claiming Copyleft in Open Source Software 315

path. The developer community often prefers that the company use GPLv2
because the license has a strong reputation among programmers.117 The
programmers appreciate the fact that the FOSS side of the dual license will
adhere to some degree of free software principles, even if the company is
not a non-profit organization devoted to free software. There may be some
tendency within the free software camp to see dual licensing as too great a
compromise of free software principles, due to the fact that dual licensing
may result in software being distributed under the traditional proprietary
model. Sometimes the proprietary version is a complete duplicate of the
version available under the FOSS license, but the end-users desire training,
support, warranties, and other services only available from a commercial
company. Ensuring that all of the commercial-path code is available on the
FOSS path, however, may lessen the offense to free software principles.
Nevertheless, sometimes the commercial distribution blends in other pro-
prietary software. Because of this, the FOSS path of the dual license might
be seen to facilitate non-free programs. This would resonate with other
situations where the FSF might use its GPLv2 enforcement power.

The enforcement threat to dual licensing is important because the
other dominant type of FOSS licensing has less need for dual licensing.
Attribution-only licenses are sufficiently permissive that while pragmatic
considerations might move a commercial company to support the develop-
ment community, license terms inhibiting the software’s commercial use
and distribution are minimal. Thus, a commercial company may find it
difficult to develop the community under an attribution-only license. The
community wants the pre-commitment of a dual license where one path is
GPLv2, or a similar license that guarantees a free software path. In other
words, the place where the need for dual licensing is greatest is also where
the GPLv2 patent enforcement power would be most potent.

The importance of dual licensing to the FOSS movement is an impor-
tant related question. At the time of this writing, however, it is not as im-
portant as, for example, the success of GNU/Linux. If dual licensing’s im-
portance were to grow, the GPLv2 patent could potentially alter the trajec-
tory of the movement, at least in the counterfactual. In considering the last
enforcement moment, one part of that trajectory includes surprising devel-
opments by Microsoft to involve itself with open source licenses and soft-
ware development approaches.

 117. See David McGowan, SCO What? Rhetoric, Law and the Future of F/OSS Pro-
duction 33-34 (Univ. of Minn. Law Sch., Research Paper No. 04-9, 2004), available at
http://www.ssrn.com/abstract=555851 (suggesting that the GPL terms may not necessarily be
optimal for the developers who use them, but are employed in a trademark sense as a quasi
brand identity espousing certain development procedures or ideological beliefs developers
may find more important than the terms themselves).

316 Michigan State Law Review [Vol. 2008:279

6. Microsoft’s Shared Source Licenses

After Microsoft took appreciable note of the FOSS movement, its pos-
ture toward it was, and remains in most ways, adversarial. This is particu-
larly true for the free software strand of the movement.

In the second decade of FOSS, however, a variety of forces led to a
slight tilt in that posture. The FOSS movement grew in stature and success,
particularly for server computing and the Internet. Microsoft’s maturation
led to market dominance in key areas of desktop computing, but the com-
pany also came under scrutiny from antitrust and competition authorities in
the Americas and in Europe. In addition, Internet-enabled changes in the
information technology ecosystem, heightened pressures for interoperabil-
ity, technological transparency and standards, and gave desktop prominence
to network computing applications such as Google’s Internet-wide search.

Against the backdrop of these forces, in the mid-2000s, Microsoft be-
gan a “shared source” program that initially allowed customers to view
source code. This was evidence that, because of the FOSS movement, the
market was beginning to recognize the transparency and interoperability
value in open code. Currently, this program operates under a “Reference
License” promulgated by Microsoft.118 Shared source at Microsoft, how-
ever, has grown to include two other licenses, one of which relates to the
attribution-only category of Section III.C above, and thus would certainly
not infringe the GPLv2 patent.119 The other license is the Microsoft Recip-
rocal License.120 Using generic versions of these licenses made available by
Microsoft, the company claims that third-party developers have distributed

 118. Microsoft, Microsoft Reference License (MS-RL) (Mar. 8, 2007), http://ww-
w.microsoft.com/resources/sharedsource/licensingbasics/referencelicense.mspx (last visited
May 14, 2008). Microsoft’s description of the Reference License resonates with transpar-
ency and interoperability values:

The license prohibits all use of source code other than the viewing of the code for
reference purposes. The intent of this license is to enable licensors to release, for
review purposes only, more sensitive intellectual property assets.
Microsoft commonly uses this license for developer libraries where modification is
not required to make use of the source code. In these cases, the importance of
transparency is based on the need for developers to more deeply understand the in-
ner workings of the source code. In doing so, the licensees will be more effective
in writing software that makes use of the licensed source code.

Microsoft, Shared Source Licenses (Oct. 18, 2005), http://www.microsoft.com/re-
sources/sharedsource/licensingbasics/sharedsourcelicenses.mspx [hereinafter SharedSource]
(last visited May 14, 2008).
 119. Microsoft, Microsoft Public License (Ms-PL) (Oct. 12, 2006),
http://www.microsoft.com/resources/sharedsource/licensingbasics/publiclicense.mspx (last
visited May 14, 2008).
 120. Microsoft, Microsoft Reciprocal License (Ms-RL) (Oct. 12, 2006),
http://www.microsoft.com/resources/sharedsource/licensingbasics/reciprocallicense.mspx
[hereinafter MS Reciprocal License] (last visited May 14, 2008).

Spring] Claiming Copyleft in Open Source Software 317

over hundreds of source code distributions.121 Thus, at some level, Micro-
soft is now facilitating open source software.122

Under the Microsoft Reciprocal License, this facilitation includes re-
ciprocity for source code disclosure. The license does not prohibit royalties.
The reach of the Microsoft Reciprocal License’s reciprocal or copyleft pro-
vision is similar to the MPL “file-level” copyleft mechanism discussed in
Subsection III.D.4 above—under the Microsoft Reciprocal License, changes
to a file are the determining factor in considering whether the license must
extend to the intermixed code.123

Given that the analysis of “file-level” copyleft posits at best a tenuous
infringement scenario under the DOE, the Microsoft Reciprocal License is a
step further away from infringing the GPLv2 patent because it does not pro-
hibit royalties. Users may commercialize the code, so long as they make
source code available.

Even if the infringement case is more tenuous, the target is more
tempting. The free software strand of the FOSS movement, and the FSF in
particular, are likely suspicious of Microsoft and dubious about any real
commitment to open source principles, much less free software ideals.
Thus, a reasonable strategic response, if there were any GPLv2 enforcement
power, would be to disfavor the Microsoft Reciprocal License, or to outright
declare that no permission was granted to practice the GPLv2 patent by
licensing under the Microsoft Reciprocal License. One strategic justifica-
tion for this from the free software perspective is that keeping Microsoft at a
distance prevents infiltration. Under this notion, the FOSS movement is
disserved if developers flock in droves to the Microsoft open source portal124
and expend energies there as opposed to other general community-

 121. See SharedSource, supra note 118 (“These non-Microsoft developers have used
the Microsoft Shared Source licenses to license more than 700 of their own source-code
distributions.”). Whether that number is significant or not is a matter of opinion, but one
way to calibrate it is by comparison to the popular Sourceforge FOSS repository, which
around the time of this Article, listed nearly 200,000 projects. See Sourceforge.net,
http://sourceforge.net (last visited May 14, 2008) (“Registered Projects: 173,134 Registered
Users: 1,818,459.”).
 122. Microsoft, Open Source at Microsoft: World of Choice,
http://www.microsoft.com/opensource/choice.mspx (last visited May 14, 2008) (“Microsoft
is continually growing the number of products released with open source access.”).
 123. See MS Reciprocal License, supra note 120, § 3(A). Microsoft’s commentary
about the Reference License notes:

Thus, the intent of the reciprocal license is to use licensing as a mechanism to keep
certain community-based code “in the community,” while allowing companies to
commercialize and license (under terms of their choice) their “value add” code that
interacts with the community-based code.

SharedSource, supra note 118.
 124. Microsoft, Open Source at Microsoft, http://www.microsoft.com/open-
source/default.mspx (last visited May 14, 2008).

318 Michigan State Law Review [Vol. 2008:279

sponsored projects. Microsoft’s shared source efforts would be painted as a
shrill ploy to channel some of the FOSS movement away from genuine free
software development. Whether this is in fact Microsoft’s motivation, or
whether more benign influences such as customer demand for interoperabil-
ity and transparency motivate it, is irrelevant. In the counterfactual, Micro-
soft’s true motivation ultimately does not matter because the GPLv2 en-
forcement power is unlikely to reach Microsoft’s “file-level,” royalty-
neutral, copyleft license.

The Microsoft Shared Source enforcement moment, then, would be
yet another example of the GPLv2 patent’s inability to reach the proprietary
software world. The most potent FOSS enforcement would continue to be
the unique copyleft conditions rooted in copyright law and enabled by the
high desirability and quality of many FOSS programs.

CONCLUSION

This last enforcement moment ends the counterfactual where the
FOSS movement began—in opposition to proprietary software. The copy-
right-based licensing system that has lifted FOSS through the last two dec-
ades remains a much more potent tool against the enemy of the free soft-
ware strand than the hypothetical GPLv2 patent would be. Patent law’s
right to exclude would give notable, but not overwhelming, enforcement
power within the movement, and little if any power outside of it.

Although the counterfactual is hypothetical, contemporaneous with
this Article’s publication, there are patent applications pending before the
PTO claiming software licensing methods directly related to FOSS licens-
ing.125 These applications were published under U.S. patent law’s eighteen-

 125. Authenticating Licenses for Legally-Protectable Content Based on License
Profiles and Content Identifiers, U.S. Patent Pub. 20050125358 (filed Dec. 4, 2003) (disclos-
ing a license-authority method of analyzing license information related to intellectual prop-
erty, such as software, by evaluating license information from both a content owner and a
content user to ensure that the content user’s resulting license information is authentic and
accurately represents the restrictions imposed by the content owner’s license restrictions);
Software License Isolation Layer, U.S. Patent Pub. 20040068734 (filed Oct. 7, 2002) (dis-
closing a system and method for using a license isolation layer in the process of software
development to detect conflicting license terms); Integrated Development Environment for
Managing Software Licensing Restrictions, U.S. Patent Pub. 20060242077 (filed Apr. 21,
2005) (disclosing a system and method for identifying software license conflicts during
software development to prevent licensing conflicts by identifying a target software license
associated with a software development project, identifying a license associated with the
code object, and allowing the code object to be included in the software development project
only if the license associated with the code object is compatible with the target software
license); Methods and Apparatuses for Reviewing General Public Licenses, U.S. Patent Pub.
20060288421 (filed June 15, 2005) (disclosing a method and apparatuses for detecting con-
flicts in licensing terms between a first general public license corresponding to a first group
of code and a second general public license corresponding to a second group of code);

Spring] Claiming Copyleft in Open Source Software 319

month publication requirement,126 and one has even issued.127 Many of these
applications focus on the “infectious” provision of licenses like the GPLv2.
Generally, they claim methods and structures to segment and partition soft-
ware so that a strong copyleft mechanism such as that found in the GPLv2
will not reach intermixed software. These applications for copyleft-
immunization patents illustrate the role patent protection may play in the
future of FOSS licensing methods, above and beyond the already notable
impact software patents have had on information technology.

As a postscript, the counterfactual needs one final annotation. Assum-
ing that the term is measured starting in 1991, in a few short years from the
time of this writing, in 2011, the GPLv2 patent will expire. Twenty years is
a long time compared to the life span of many technologies in computing,
but perhaps twenty years will be a short time in the lifespan of the FOSS
movement.

Automated License Dependency Resolution and License Generation, U.S. Patent Pub.
20020188608 (filed June 12, 2001) (disclosing a system for identifying potential license
issues when combining software components and identifying potential licenses to resolve
these issues); Resolving License Dependencies for Aggregations of Legally-Protectable
Content, U.S. Patent Pub. 20050125359 (filed Dec. 4, 2003) (disclosing a method of identi-
fying and comparing license attributes from two protectable contents to determine license
attributes for a new protectable content based on a combination of the two protectable con-
tents).
 126. 35 U.S.C. § 122(b) (2000).
 127. Method and System for Managing Intellectual Property Aspects of Software
Code, U.S. Patent No. 7,277,904 (filed Dec. 18, 2003) (issued Oct. 2, 2007) (disclosing a
system for managing license terms for a large-scale software project).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.55667
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

