United States Patent

Niznick

[54] SCREW-TYPE DENTAL IMPLANT ANCHOR

[75] Inventor: Gerald A. Niznick, Encino, Calif.

[73] Assignee: Core-Vent Corporation, Encino, Calif.

[21] Appl. No.: 231,653

[22] Filed: Aug. 10, 1988

Related U.S. Application Data

[51] Int. Cl. A61C 8/00

[52] U.S. Cl. 433/174; 433/173

[58] Field of Search 433/173, 174, 176, 221, 433/225; 623/16

[56] References Cited

U.S. PATENT DOCUMENTS

711,324 10/1902 Lacy 433/174
866,304 9/1907 Roach 433/177
2,112,007 3/1938 Adams 433/174
2,347,567 4/1944 Kresse 433/174
2,609,604 9/1952 Sprague 433/174
4,109,383 8/1978 Reed et al. 433/176
4,177,562 12/1979 Miller et al. 433/174
4,180,910 1/1980 Straumann 433/173
4,342,550 4/1982 Reuthen et al. 433/174
4,359,318 11/1982 Gittleman 433/174
4,431,416 2/1984 Niznick 433/174
4,468,200 8/1984 Munch 433/174
4,488,875 12/1984 Niznick 433/173
4,624,673 11/1986 Meyer 433/173

FOREIGN PATENT DOCUMENTS

42665 10/1976 Japan 433/174
83591 1/1977 Japan 433/173
1291470 10/1972 United Kingdom 433/173
1352188 5/1974 United Kingdom 433/174
1544784 4/1979 United Kingdom 433/173

OTHER PUBLICATIONS

Primary Examiner—John T. Wilson

[57] ABSTRACT

A screw-type dental implant anchor includes an externally-threaded body portion having internal structure for engaging an insertion tool. The body portion can be joined to a top portion having an unthreaded exterior wall. This internal is inside a top portion or inside the body portion of the anchor. The top portion is open, preferably chamfered at its upper end, and in registration with an internally-threaded shaft inside the body portion of the anchor that extends from a plane just below the head portion downwardly a substantial distance inside the body portion. The distal end of the anchor includes a through hole extending from one side of the body portion to the other, and an opening at the bottom of the body portion extending upwardly inside the body portion a distance sufficient to permit bone and associated tissue to grow into and through these openings and to permit blood tissue to escape.

44 Claims, 2 Drawing Sheets
SCREW-TYPE DENTAL IMPLANT ANCHOR

This application is a continuation of application Ser. No. 001,564, filed Jan. 8, 1987, now abandoned.

This invention relates to a screw-type dental implant anchoring means comprising an externally-threaded, preferably self-tapping, body portion. The implant has internal means for engaging means for inserting the implant into an opening formed in bone tissue to receive the implant. This internal means is, preferably, a wrench-engaging surface. In preferred embodiments, the body portion is joined to a top portion having an unthreaded exterior wall. Preferably, the internal means for implant insertion is inside that top portion, but can alternatively be inside the body portion. The top or head portion is open, preferably chamfered at its upper end, and in registration with an internal, threaded shaft. This shaft is inside the body portion of the anchor, and extends from a plane just below the head portion downwardly a substantial distance inside the body portion of the anchor.

The distal end of the anchor preferably includes a through hole extending from one side of the body portion to the other. The distal end also includes an opening at the bottom of the body portion extending upwardly inside the body portion a distance sufficient to permit bone and associated tissue to grow into and through these openings, and to permit blood tissue to pass through, but preferably less than about one-third the length of the body portion itself.

Preferably, the head portion has a hex nut configuration on its inner wall surfaces for receiving a hex wrench, and has a cylindrically-shaped, smooth outer wall. Alternatively, the hex nut configuration can be within, and preferably at the base of the shaft inside the body portion. The internal hex nut configuration permits the insertion of the anchoring means in the jawbone of a subject without countersinking the upper surface of the bone where the head portion of the anchoring means lies when the anchoring means is properly inserted in the jaw. Preferably, the head portion has an outer circumference no greater than the circumference of the externally-threaded body portion that is joined to the head portion, thus obviating any need to enlarge the top of the opening in a bone to permit proper insertion of the anchoring means.

The head portion is preferably chamfered at its open, upper end. This chamfered surface permits frictional locking with any adaptor or other connecting means inserted into the opening, is of sufficient size and depth to afford lateral stability to any adaptor or other connecting means inserted into the opening in the head portion, and forms a smooth, easily cleaned margin with complementary connecting means inserted into the opening of the head portion.

The anchoring means is preferably made of commercially-pure titanium, and preferably has an outside thread diameter of not more than about 4 millimeters. The anchoring means preferably has a length in the range of about 5 to about 20 millimeters in preferred embodiments.

This invention can better be understood by reference to the drawings, in which:

FIG. 1 is a cross-sectional view of the implant embodiment shown in FIG. 1, taken on line 2—2 of FIG. 1;

FIG. 2 is a top plan view of the implant embodiment shown in FIGS. 1 and 2;

FIG. 3 is a perspective view of another dental implant anchor embodiment that includes internal means for engaging means for inserting the implant into bone tissue; and

FIG. 4 is a perspective view of another dental implant anchor embodiment shown in FIGS. 1 and 2.

In embodiment 1 of FIG. 1, body portion 2 of implant 1 has a self-tapping, threaded exterior surface 3. Threaded exterior surface 3 of implant 1 is linked, at the top, to head portion 4. Head portion 4 has a smooth cylindrical-shaped external surface 11 and a hex-shaped internal wall surface 5 for engagement with a wrench such as an Allen-type wrench. Above the hex-shaped internal wall surface is chamfered interior wall surface 7 of head portion 4. Head portion 4 extends a linear distance of about 2 mm inside of implant 1.

Inside body portion 2 of implant 1 is internally-threaded passage 8, which extends from a plane at the base of head portion 4 in parallel to the axis of body portion 2 a linear distance of about 3 mm inside body portion 2.

At the end of implant 1 opposite head portion 4 is opening 9, which extends transversely through, and across the axis of body portion 2. Opening 9 permits the growth of anchoring bone through the opening, after anchoring means 1 has been screwed into the jaw of a subject.

At the end of implant 1, opposite head portion 4, is axial opening 10, which is unthreaded, and which extends a linear distance of about 2 mm into body portion 2.

Internally-threaded passage 8 inside implant 1 can receive a variety of cementable and threaded adaptors already in use, such as threaded copings, threaded screws, and cementable dental prostheses. See, for example, the Core-Vent Corporation publication entitled, "Implant Prosthodontics: An Idea Whose Time Has Come!", published in January, 1986, pp. 6-7.

FIG. 4 shows another dental implant anchoring means 20 having a body portion 21 and a head portion 30. Body portion 21 includes a hollow, vented portion 22 that includes a plurality of vents such as vent 23 and, atop vented portion 22, a threaded portion 24. The implant has an internal shaft 28 extending downwardly and inwardly from opening 31. Shaft 28 has threads 29 on its internal wall below the head portion 30. Head portion 30 has a smooth exterior wall 25, a chamfered surface 27 at its opening 31, and a wrench-engaging surface 26 inside head portion 30. Chamfered surface 27 is adapted to receive, and fit smoothly with inserts adapted to engage and support a dental prosthesis such as a prosthetic tooth.

FIG. 5 shows another embodiment of a new dental implant anchoring means of the invention. In most respects, this implant is identical to the implant shown in FIG. 1, except that the internal wrench-engaging surface 5 lies at the bottom of the internal passage inside the implant instead of on the internal surfaces of the top portion of the implant. While FIG. 5 shows the internal passage, below the top portion, to be partially threaded to receive and engage with threaded inserts such as dental prostheses, the threading is not mandatory, and the walls of the internal passage can, in alternative em-

FIG. 5 shows another embodiment of a new dental implant anchoring means of the invention. In most respects, this implant is identical to the implant shown in FIG. 1, except that the internal wrench-engaging surface 5 lies at the bottom of the internal passage inside the implant instead of on the internal surfaces of the top portion of the implant. While FIG. 5 shows the internal passage, below the top portion, to be partially threaded to receive and engage with threaded inserts such as dental prostheses, the threading is not mandatory, and the walls of the internal passage can, in alternative em-
bodiments, be smooth instead of threaded, or partially threaded and partially smooth.

The screw-type dental implant anchoring means of this invention can be inserted into the bone of a subject by a simplified surgical procedure utilizing a pilot drill and two internally-irrigated, end-cutting drills of progressively increasing diameter. Because of effective cooling through the shaft of the burr, it is unnecessary to use all three instruments where porous bone exists, such as in the maxilla. In some embodiments of the new anchoring means, an additional thread at the apex of the anchoring means makes the anchoring means self-tapping.

Alternatively, and particularly where the bone that is intended to receive the anchoring means is dense, the anchoring means can be seated following the creation of threads in the bone of a subject using a titanium bone tap device. Properly inserted in the bone of a subject, the anchoring means of this invention immediately seals the opening through the cortical bone, simplifies the uncovering procedure, and provides a smooth, easily-cleaned supracortical connection to a matching, chamfered edge on a threaded insert.

What is claimed is:

1. A screw-type dental implant anchoring means comprises an externally-threaded body portion joined to a top portion having an unthreaded exterior wall, said implant having an internal, wrench-engaging surface, and an internally-threaded shaft extending downwardly from said top portion into said body portion, said top portion having an outer circumference substantially no greater than the circumference of the externally-threaded body portion, said internal, wrench-engaging surface lying substantially entirely within said shaft, inside said body portion, substantially entirely within the exterior walls of said anchoring means, and substantially entirely below the upper surface of said anchoring means.

2. The dental implant anchoring means of claim 1 further comprising, within said top portion, a chamfered internal surface at the upper opening of said top portion.

3. The dental implant anchoring means of claim 1 wherein said top portion includes, near the opening in said top portion, a chamfered interior wall surface adapted to receive, engage and support said connectable prosthetic means.

4. The dental implant anchoring means of claim 1 wherein said internally-threaded shaft is above said internal, wrench-engaging surface.

5. The dental implant anchoring means of claim 1 wherein said internally-threaded shaft is below said internal, wrench-engaging surface.

6. The dental implant anchoring means of claim 1 wherein said internally-threaded shaft and said internal, wrench-engaging surface are adapted to receive and engage an adaptor selected from the group consisting of cementable adaptors and threaded adaptors.

7. A dental implant anchoring means comprising an externally-threaded body portion, and an internally-threaded shaft extending longitudinally into said body portion, said implant having internal, wrench-engaging implant insertion means lying substantially entirely within said shaft, substantially entirely inside said body portion, and substantially entirely below the upper surface of said anchoring means.

8. The dental implant anchoring means of claim 7 further comprising, near the top of said shaft, a chamfered interior wall surface adapted to receive, engage and support said connectable prosthetic means.

9. The dental implant anchoring means of claim 7 wherein said internally-threaded shaft is above said internal, wrench-engaging surface.

10. The dental implant anchoring means of claim 7 wherein said internally-threaded shaft is below said internal, wrench-engaging surface.

11. The dental implant anchoring means of claim 7 wherein said internally-threaded shaft and said internal, wrench-engaging surface are adapted to receive and engage an adaptor selected from the group consisting of cementable adaptors and threaded adaptors.

12. A dental implant anchoring means comprising a body portion having threads on part of the external wall surface of the body portion, an internally-threaded shaft extending longitudinally into said body portion, a vent means on another, hollow part of the external wall surface of the body portion, and internal, wrench-engaging means lying substantially entirely inside said shaft, substantially entirely within the exterior walls of said anchoring means, and substantially entirely below the top surface of said anchoring means, for inserting said implant into an opening formed in the tissue.

13. The dental implant anchoring means of claim 12 further comprising a top portion joined to said body portion, said top portion having a smooth external wall.

14. The dental implant anchoring means of claim 12 further comprising a top portion joined to said body portion, said top portion having a smooth external wall.

15. The dental implant anchoring means of claim 12 wherein said internally-threaded shaft is above said internal means.

16. The dental implant anchoring means of claim 12 wherein said internally-threaded shaft is below said internal means.

17. The dental implant anchoring means of claim 16 further comprising a chamfered internal surface of the upper opening of said shaft.

18. The dental implant anchoring means of claim 12 wherein said internally-threaded shaft and said internal, wrench-engaging surface are adapted to receive and engage an adaptor selected from the group consisting of cementable adaptors and threaded adaptors.

19. A screw-type dental implant anchoring means comprising an externally-threaded body portion joined to a top portion having an unthreaded exterior wall, and an internally-threaded shaft inside said body portion, said implant having an internal, wrench-engaging surface lying substantially entirely inside said shaft, substantially entirely within the exterior walls of said anchoring means, substantially entirely below the upper surface of said anchoring means, and inside said body portion for engaging implant insertion wrench means, said top portion being adapted to receive prosthetic connecting means for insertion into the upper surface of said implant anchoring means that forms a smooth, easily cleaned margin with said anchoring means upon insertion into said upper surface.

20. The dental implant anchoring means of claim 19 wherein said threaded shaft extends downwardly from a plane just below said top portion a substantial distance inside the body portion.

21. The dental implant anchoring means of claim 20 further comprising, at the distal end of said anchoring means, a through hole extending from one side of the body portion to the other, and an opening at the bottom
of the body portion extending axially upwardly inside
the body portion.

22. The dental implant anchoring means of claim 19
further comprising, within said top portion, means for
joining said anchoring means to said connecting prosthetic
devices.

23. The dental implant anchoring means of claim 19
wherein said internally-threaded shaft extends from a
plane just below said top portion downwardly a sub-
stantial distance inside said shaft.

24. The dental implant anchoring means of claim 19
wherein said internally-threaded shaft and said internal,
wrench-engaging surface are adapted to receive and
engage an adaptor selected from the group consisting of
cementable adaptors and threaded adaptors.

25. A dental implant anchoring means comprising an
externally-threaded body portion, and, at internally
threaded shift inside said body portion, said implant
having internal, wrench-engaging means lying substan-
tially entirely inside said shaft, substantially entirely
within the exterior walls of said anchoring means, sub-
stantially entirely below the top surface of said anchoring
means and inside said body portion for engaging
implant insertion wrench means, said anchoring means
being adapted to receive prosthetic connecting means
that includes post means that fit into said internally-
threaded shaft and that form a smooth, easily cleaned
margin with said anchoring means upon said insertion
into said upper surface.

26. The dental implant anchoring means of claim 25
wherein said internally-threaded shaft is above said internal,
wrench-engaging surface.

27. The dental implant anchoring means of claim 25
wherein said internally-threaded shaft is below said internal,
wrench-engaging surface.

28. The dental implant anchoring means of claim 25
wherein said internally-threaded shaft and said internal,
wrench-engaging surface are adapted to receive and
engage an adaptor selected from the group consisting of
cementable adaptors and threaded adaptors.

29. A dental implant anchoring means comprising an
externally-threaded body portion joined to a top
portion having an unthreaded exterior wall, and an inter-

nally-threaded shaft inside said body portion, said im-
plant having internal, wrench-engaging means lying substan-
tially entirely inside said shaft, substantially en-
tirely within the exterior walls of said anchoring means,
substantially entirely below the top surface of said an-
choring means and inside said body portion for engag-
ing implant insertion wrench means, said top portion
being adapted to receive prosthetic connecting means
that forms a smooth, easily cleaned margin with said
anchoring means upon insertion into said upper surface.

30. The dental implant anchoring means of claim 29
wherein said top portion includes, near the opening in
said top portion, a chamfered interior wall surface
adapted to receive, engage and support said connect-
able prosthetic means.

31. The dental implant anchoring means of claim 29
wherein said internally-threaded shaft is above said internal,
wrench-engaging surface.

32. The dental implant anchoring means of claim 29
wherein said internally-threaded shaft is below said internal,
wrench-engaging surface.

33. The dental implant anchoring means of claim 29
wherein said internally-threaded shaft and said internal,
wrench-engaging surface are adapted to receive and
engage an adaptor selected from the group consisting of
cementable adaptors and threaded adaptors.

34. A dental implant anchoring means comprising a
top portion joined to a body portion, said body portion
having threads on part of the external wall surface of
the body portion, a vent means on another, hollow part
of the external wall surface of the body portion, and an
internally-threaded shaft inside said body portion, and
internal, wrench-engaging means lying substantially
entirely inside said shaft, substantially entirely within
the exterior walls of said anchoring means, substantially
entirely below the top surface of said anchoring means,
and inside said body portion for engaging wrench
means for inserting said implant into an opening formed
in jawbone tissue, said top portion being adapted to
receive prosthetic connecting means, said prosthetic
connecting means when placed in said internally-
threaded shaft forming a smooth, easily cleaned margin
with said anchoring means upon insertion into said
upper surface.

35. The dental implant anchoring means of claim 34
wherein said internally-threaded shaft and said internal,
wrench-engaging surface are adapted to receive and
engage an adaptor selected from the group consisting of
cementable adaptors and threaded adaptors.

36. A dental implant anchoring means comprising a
body portion, an internally-threaded shaft extending
downwardly from the top of said dental implant an-
choring means into said body portion, and, an internal,
wrench-engaging surface lying substantially entirely
within said shaft, substantially entirely within the exter-
ior walls of said anchoring means, and substantially
entirely below the top surface of said anchoring means.

37. The dental implant anchoring means of claim 36
further comprising, at the distal end of said anchoring
means, a through-hole extending from one side of the
body portion to the other, and an opening at the bottom
of the body portion extending axially upwardly inside
the body portion.

38. The dental implant anchoring means of claim 37
wherein the internal, wrench-engaging surface is
adapted to receive a hex wrench.

39. The dental implant anchoring means of claim 36
further comprising a vent means on another, hollow
part of the external wall surface of the body portion.

40. The dental implant anchoring means of claim 36
wherein said internally-threaded shaft and said internal,
wrench-engaging surface are adapted to receive and
engage an adaptor selected from the group consisting of
cementable adaptors and threaded adaptors.

41. A dental implant anchoring means comprising an
externally-threaded body portion, and an internally-
threaded shaft extending downwardly from the top of
said implant anchoring means inside said body portion,
said implant having an internal, wrench-engaging sur-
face lying substantially entirely inside said shaft, sub-
stantially entirely within the exterior walls of said an-
choring means, and lying substantially entirely below the
top surface of said anchoring means, said shaft being
adapted to receive prosthetic connecting means that
forms a smooth, easily-cleaned margin with said an-
choring means upon insertion into said shaft, said shaft
including near the opening at the top of said shaft, a
chamfered interior wall surface adapted to receive,
engage and support said prosthetic connecting means.

42. The dental implant anchoring means of claim 36
wherein said internally-threaded shaft and said internal,
wrench-engaging surface are adapted to receive and
engage an adaptor selected from the group consisting of cementable adaptors and threaded adaptors.

43. A dental implant anchoring means comprising a body portion, and an internally-threaded shaft extending downwardly from the top of said implant anchoring means inside said body portion, said implant having an internal, wrench-engaging surface lying substantially entirely inside said shaft, substantially entirely within the exterior walls of said anchoring means, and substantially entirely below the top surface of said anchoring means, said shaft being adapted to receive prosthetic connecting means that forms a smooth, easily-cleaned margin with said anchoring means upon insertion into said shaft, said shaft including near the opening at the top of said shaft, a chamfered interior wall surface adapted to receive, engage and support said prosthetic connecting means.

44. The dental implant anchoring means of claim 43 wherein said internally-threaded shaft and said internal, wrench-engaging surface are adapted to receive and engage an adaptor selected from the group consisting of cementable adaptors and threaded adaptors.
REEXAMINATION CERTIFICATE (3487th)
United States Patent [19]

Niznick

[54] SCREW-TYPE DENTAL IMPLANT ANCHOR

[75] Inventor: Gerald A. Niznick, Encino, Calif.

[73] Assignee: Core-Vent Corporation, Encino, Calif.

Reexamination Certificate for:
Patent No.: 4,960,381
Issued: Oct. 2, 1990
Appl. No.: 231,653
Filed: Aug. 10, 1988

Reexamination Request:
No. 90/004,452, Nov. 13, 1996

Related U.S. Application Data

Continuation of Ser. No. 1,564, Jan. 8, 1987, abandoned.

Int. Cl. 6 A61C 8/00

U.S. Cl. 433/174; 433/173

Field of Search 433/173, 174, 433/175, 176

References Cited

U.S. PATENT DOCUMENTS

4,051,559 10/1977 Pifferi ... 319/912
4,324,550 4/1982 Reuther ... 433/174
4,431,416 2/1984 Niznick ... 433/174
4,624,673 11/1986 Meyer ... 623/16
4,713,003 12/1987 Symington 433/173

Certificate Issued Apr. 14, 1998

4,713,004 12/1987 Linkow ... 433/174
4,744,754 5/1988 Ross ... 433/173
4,772,204 9/1988 Soderbergh 433/174
4,826,434 5/1989 Krueger .. 433/174

FOREIGN PATENT DOCUMENTS

0000549 2/1979 European Pat. Off.
540713 3/1956 Italy ...
413224 12/1966 Switzerland
1291470 10/1972 United Kingdom
WO8302555 8/1993 WIPO ..

Primary Examiner—Cary F. O’Connor

ABSTRACT

A screw-type dental implant anchor includes an externally-threaded body portion having internal structure for engaging an insertion tool. The body portion can be joined to a top portion having an unthreaded exterior wall. This internal is inside a top portion or inside the body portion of the anchor. The top portion is open, preferably chamfered at its upper end, and in registration with an internally-threaded shaft inside the body portion of the anchor that extends from a plane just below the head portion downwardly a substantial distance inside the body portion. The distal end of the anchor includes a through hole extending from one side of the body portion to the other, and an opening at the bottom of the body portion extending upwardly inside the body portion a distance sufficient to permit bone and associated tissue to grow into and through these openings and to permit blood tissue to escape.
REEXAMINATION CERTIFICATE
ISSUED UNDER 35 U.S.C. 307

THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW.

Matter enclosed in heavy brackets [] appeared in the
patent, but has been deleted and is no longer a part of the
patent; matter printed in italics indicates additions made
to the patent.

AS A RESULT OF REEXAMINATION, IT HAS BEEN
DETERMINED THAT:

The patentability of claims 1–35, 41–43 and 44 is con-
firmed.

Claims 36 and 38 are determined to be patentable as
amended.

Claims 37, 39 and 40, dependent on an amended claim,
are determined to be patentable.

New claims 45–47 are added and determined to be
patentable.

36. A dental implant anchoring means comprising a body
portion, an internally-threaded shaft extending downwardly
from the top of said dental implant anchoring means into

said body portion, said internally-threaded shaft terminating
inside said body portion, and an internal, wrench-engaging
surface lying substantially entirely within said shaft, sub-
stantially entirely within the exterior walls of said anchoring
means, and substantially entirely below the top surface of
said anchoring means.

38. [The dental implant anchoring means of claim 37] A
dental implant anchoring means comprising a body portion,
an internally-threaded shaft extending downwardly from
the top of said dental implant anchoring means into said body
portion, and an internal, wrench-engaging surface lying
substantially entirely within said shaft, substantially entirely
within the exterior walls of said anchoring means, and
substantially entirely below the top surface of said anchor-
ing means, wherein the internal, wrench-engaging surface
[is] adapted to receive a hex wrench.

45. The dental implant anchoring means of claim 36
wherein said body portion and said internally-threaded shaft
are cylindrically-shaped over substantially their entire
length.

46. The dental implant anchoring means of claim 36
wherein said internal, wrench-engaging surface is multi-
sided, and includes at least six sides.

47. The dental implant anchoring means of claim 46
wherein said internal wrench-engaging surface and said
internally-threaded shaft are together adapted to receive
and engage a multi-sided adaptor.

* * * * *